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Abstract. The planetary boundary layer height (PBLH) is a key variable in air

quality, climate modeling, and weather prediction. Traditional retrieval methods, such

as radiosondes, provide high accuracy but lack spatial coverage. This study presents a

Random Forest (RF) model based on Machine Learning (ML) to estimate PBLH from

ten years of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board

the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO),

using radiosonde measurements as a reference. The model achieves an R2 of 0.67 and

an RMSE of 278.02 m with a spatial resolution of ≈ 20x20 km2 in a test set that covers

mainly Europe and North America. Unlike previous methods, our approach does not

require atmospheric typing and uses minimal data filtering, demonstrating robustness

under diverse aerosol and cloud conditions. Although validation is currently limited

to mid-latitude regions, the method offers a scalable approach to global monitoring

and supports the management of climate and air quality. Future work will extend

the validation to other geographic zones and explore deep learning models for further

improvements.
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Introduction

e Planetary Boundary Layer (PBL), in direct contact with the Earth’s surface [1],

nificantly influences air quality by regulating the dispersion of pollutants [2]. In

ct, the depth of the boundary layer determines the spatial volume available for

e emission of surface pollutants, having a direct influence on their concentration

els [3], and monitoring of these pollutants, such as PM2.5, is a critical aspect of

ban air quality management that integrates ground-based, satellite, and machine

rning approaches [4]. In extratropical regions, especially during winter high-pressure

ticyclones, a shallow PBL contributes to severe pollution events and haze formation,

cause of insufficient solar radiation to drive convection and mixing [5]. In contrast,

tropical areas, the circulation of the monsoon primarily controls the depth of the

L [6]. Accurate estimation of PBL height (PBLH) is essential to improve air

ality forecasts and reanalysis, particularly in urban and metropolitan settings where

llutant accumulation is a major concern [7]. However, PBLH measurements remain

arse due to the limited number of observational platforms, with global data primarily

tained from a combination of independent national radiosonde networks. These

tworks, although extensive, do not cover every geographic region uniformly, resulting

data gaps. The World Meteorological Organization (WMO) radiosounding network

ays an essential role in filling these gaps by providing standardized and coordinated

servations in different countries. Nevertheless, the current density of stations in this

twork remains inadequate for full global coverage, requiring PBLH measurements to

ly significantly on regional projects and cooperative efforts to enhance the availability

d reliability of data. The entrainment zone at the top of the PBL plays a significant

le in air pollution. Its complexity due to dynamics such as turbulence and convection

ows the transfer of thermal energy, moisture, and atmospheric gases [1], making its

rtical structure critical for multiple scientific applications. These include photovoltaic

ergy optimization [8], numerical weather prediction [9], and climate modeling [10],

ong others, improving their representation of atmospheric mixing processes.

Common methodologies for retrieving PBLH using thermodynamical variables

clude the parcel method [11], the gradient method [12], and the Richardson

mber method [13]. These techniques incorporate temperature, humidity, and wind

mospheric profiles, which are derived from rawinsonde measurements [13]. Since most

odern radiosonde (RS) launches are in fact rawinsondes, we refer to them simply

RS throughout this manuscript. Ground-based remote sensing techniques, such as

ars [14], microwave radiometers [15], ceilometers [16], and radar wind profilers [17],

er additional means of estimation of PBLH, often using a proxy, i.e. aerosols as

cers for lidars and ceilometers, including synergistic techniques for its disambiguation.

though widely studied and proved accurate, ground-based estimations offer limited

atial coverage and require the deployment of permanent observational sites, which, at

mote locations, results in too expensive or even unfeasible results. In order to obtain

bal retrievals of the PBLH in a cost-effective manner, space-based remote sensing
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struments have been used, including GPS radio occultation [18], the Atmospheric

frared Sounder (AIRS) [19], and the Moderate Resolution Imaging Spectroradiometer

ODIS) [20]. However, they offer coarse spatial resolution and limited estimation

curacy.

One of the most widely used space-born instruments for PBLH estimation is the

oud-Aerosol lidar with Orthogonal Polarization (CALIOP; [21]) onboard the Cloud-

rosol lidar and Infrared Pathfinder Satellite Observation (CALIPSO) [22, 23, 24],

spite missing an official mission product. CALIOP level 1 (L1) data products

compass the calibrated and geolocated lidar backscatter profiles [25], from which

el 2 (L2) products such as the cloud base and highest altitudes [26], and the aerosol

er typing [27] are derived. Although providing vertically attenuated high-resolution

ckscatter profiles, the retrieval of PBLH from CALIOP presents significant challenges

e to the low signal-to-noise ratio (SNR) [21], surface backscatter contamination [28],

nal attenuation near the surface [21], and dust and cloud screening [22]. Numerous

ethodologies have been developed in the literature to address these challenges. For

ample, Zhang et al. [23] applied a maximum variance algorithm (MV) [29] combined

th the Haar-wavelet covariance transform (WCT) [30] to estimate daytime PBLH

China, achieving moderate correlations with radiosonde data (R = 0.65 in rural

eas, R = 0.59 in urban areas), but their approach relied on cloud layer products of

LIPSO Level 2 and required a coarse resolution of 0.2º x 0.2º (∼ 20km x 20km).

milarly, Leventidou et al. [22] used CALIPSO level 2 aerosol classification products to

tain PBLH, and, by dust removal scenarios, produced more accurate PBLH retrievals

Thessaloniki, Greece. Although promising, the results achieved were limited to a

gle location and were based on scenarios in which the advected dust layers were

anually removed. On the other hand, Kim et al. [24] applied the WCT technique to

LIOP data, validating the results against a ground-based lidar in Korean Peninsula.

though their method improved instrument agreement (R = 0.81, Root Mean Squared

fference (RMSD) = 250 m during the day; R = 0.51, RMSD = 560 m at night),

e results found were again limited to a single location and required manual removal

multilayer aerosol profiles. Similarly, Su et al. [31] applied the WCT over CALIOP

easurements to obtain PBLH estimates over Hong Kong and validated the results with

ound-based lidars and radiosonde launches. By applying a cloud screening method

d a horizontal smoothing window (∼ 7 km), they were able to obtain acceptable

LH estimations from CALIOP with respect to radiosondes (R = 0.52 and root mean

uared error (RMSE) = 277 m) and ground-based lidars (R = 0.65 and RMSE = 237

). Liu et al. [32] presented an image processing algorithm that grouped the CALIOP-

easured backscatter signal into two categories using a k-means approach, which were

en identified as the clusters above and below the PBLH. The method was able to

hieve high PBLH measurement accuracy at high spatial resolution (∼ 5 km) with

spect to a ground-based lidar in Wuhan, China (R2 = 0.7 and RMSE = 390 m).

fortunately, the algorithm was only tested at night and proved to be ineffective in

udy or dusty scenarios.
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The studies mentioned above highlight limitations in CALIOP-derived PBLH

timates. On the one hand, there is an overestimation of PBLH in presence of multiple

rosol layers or under high aerosol loading, leading to retrieval biases relative to

ound-based lidar and RS measurements [24]. However, there are discrepancies in the

ghttime PBLH retrievals between CALIOP, ground-based lidar, and radiosonde data,

rticularly in stable boundary layers [31]. Finally, there is a limited range of seasons,

cations, measurement times, and atmospheric scenarios in which the methods were

lidated.

To address these challenges and fill an important research gap, we propose a novel

ta fusion method based on decision tree machine learning (ML) techniques to estimate

ytime and nighttime PBLH from CALIOP Level 1 data measurements combined with

storical radiosonde data. Using a comprehensive dataset of radiosonde launches and

tersecting CALIPSO overpasses spanning 10 years, our approach retrieves PBLH from

LIOP total attenuated backscatter (TAB) profiles without requiring data filtering,

mospheric typing, or reliance on CALIOP Level 2 data, thus utilizing historical

ta from the radiosonde dataset. ML methods consider CALIOP measurements and

ntextual data (e.g. latitude, longitude, and altitude) as input features and are trained

predict the PBLH as measured by radiosondes. Additionally, the method is validated

ing radiosonde launches across extensive regions of the world with a high density

radiosonde stations, specifically in North America and Europe, where data quality

d availability are ensured. In comparison to alternative techniques such as ground-

sed lidars, RS can provide PBLH estimates in a wide range of atmospheric conditions,

cluding cloudy skies or high aerosol loads. This robustness allows for a standardized

sessment of method performance under diverse environmental scenarios, allowing more

mprehensive intercomparisons.

Accurate and large-scale estimation of PBLH is critical for air quality management,

mate adaptation, and environmental policy [33, 34, 35, 36]. Real-time monitoring can

prove early warning systems for pollution events, enabling targeted actions such as

ffic restrictions [37] and emission controls, as well as health alerts for vulnerable

pulations [38]. Integrating satellite-based PBLH data into forecasting models

proves pollution dispersion predictions [39], supporting evidence-based regulations,

pecially in urban and industrial areas. Therefore, this study offers a scalable approach

at empowers policymakers, researchers, and planners with better tools to manage air

ality, urban heat, and renewable energy deployment.

The paper is organized as follows. Section 2.1 describes the radiosonde datasets

d the CALIPSO mission. Sections 2.3 to 3.1 outline the methodologies for estimating

LH from radiosonde data and introduce the ML framework. Section 3 presents and

scusses the PBLH estimation results. Section 4 concludes with final remarks.
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Figure 1. World map showing the location of the 693 radiosonde launching stations

(red dots) considered in this work as a reference for CALIPSO retrievals of the PBLH.

Materials and Methods

1. Instrumentation

tellite lidar observations The CALIPSO mission [21], launched on April 28, 2006,

part of NASA’s A-Train satellite constellation and aims to improve understanding

the atmospheric system by providing detailed observations of clouds and aerosols

the troposphere and low stratosphere. It follows a sun-synchronous polar orbit

05 km), with a 16-day revisit cycle and an equator-crossing time of 13:30 local solar

e. After 2018, CALIPSO joined the C-Train satellite constellation at a lower orbit

88 km) [40], essentially mantaining the revisit cycle and equator crossing time [41].

LIPSO’s core instrument, the CALIOP, is a solid-state laser that emits simultaneous

-aligned pulses at 1064 and 532 nm wavelengths in a near-nadir configuration [42].

LIOP measures total-attenuated-backscatter (TAB) vertical profiles at a spatial

solution of 30 m vertically and 335 m horizontally, being able to measure the

rtical distribution, altitude, thickness, and optical properties of clouds and aerosols,

itical for climate modeling and weather forecasting. CALIPSO data are publicly

ailable through NASA’s Earthdata portal [43], enabling exploration of how clouds and

rosols influence Earth’s energy balance, atmospheric chemistry, and meteorological

tterns. The mission produces different data products [44], including detailed profiles
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d classifications of clouds and aerosols, aiding research in climate dynamics and

mospheric interaction. CALIPSO’s advanced technology and methodologies provide

sential insights on atmospheric phenomena, supporting climate change research, air

ality assessment, and predictions in meteorological science. Although the mission

ded after 17 years of operation (1st August 2023), CALIPSO remains a key

ntributor to the scientific understanding necessary to manage global environmental

allenges. Along with few system malfunctioning cases, in the last 7 years of CALIPSO

ission, CALIOP emitted intermittent low energy laser pulses which degraded those

easurements quality [45].

diosonde measurements In this work, we combined radiosonde data from multiple

urces, covering worldwide launches conducted between 2010 and 2020. The datasets

cluded:

• The German Weather Service (DWD),

• the Global Climate Observing System Reference Upper-Air Network (GRUAN

website),

• the National Oceanic and Atmospheric Administration (NOAA),

• and the University of Wyoming upper-air sounding data-set (UWYO).

Combining these four datasets, a total of 693 launch stations were considered

rldwide, as shown in Fig. 1. A total of 4,309,109 radiosonde launches were processed.

ch processed launch included measurements of the vertical profile of wind (U),

essure (P ), temperature (T ), relative humidity (RH) and dew point temperature

d), which are essential for the estimation of PBLH from radiosondes using the bulk

chardson number method (see Sect. 2.3).

Region # Stations # Valid Launches

World 693 4,309,109

N. America 140 1,413,692

S. America 55 395,310

Europe 123 774,624

Africa 36 131,203

Asia 251 1,301,059

Oceania 43 121,825

Antarctica 7 21,288

Table 1. Description of the RS launches distribution by World region.

2. High Performance Computing Environment

e to the large amount of data involved in the study, the data pre-processing and
L models training were carried out in the High Performance Computing environment
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LCULA at CommSensLab. CALCULA uses the Slurm Workload Manager as

resource management system and the GlusterFS system for data management.

tails on the environment can be found in [46]. The CPU architecture used for the

mputations was an Intel Xeon Gold 5218 2.30GHz, and 64 GB of RAM were required.

3. Bulk-Richardson Number Method

e bulk Richardson number (Rib) method is a widely used approach to estimate PBLH

]. Rib quantifies the ratio of buoyancy-induced turbulence to mechanical shear and

formulated as

Rib(z) =
gz

θv(s)

θv(z)− θv(s)

(U(z))2
, (1)

ere g is the gravitational acceleration, z is the measurement altitude, θv is the virtual

mperature, and U is the horizontal wind speed. s refers to the surface altitude. In

her words, Ri expresses the ratio of buoyant forces to shear forces. Details on the

mputation of θv from RS data can be found in Eqs. 9-12 from [13].

A critical Ri threshold is used to identify the transition from a mixed turbulence-

minated layer to a more stable free atmosphere above the PBL, thus determining

LH [47]. Threshold values typically range between 0.25 and 0.3, with minimal impact

PBLH estimates [48]. Following the study by Guo et al. [49], PBLH was derived

m RS measurements as the altitude where Ri first exceeds a threshold of 0.25.

This method is a common and accepted approach in boundary layer meteorology

]. It works effectively under different conditions as it can be applied to both convective

d stable boundary layers. Additionally, it does not require additional data, as it can

computed directly from radiosonde profiles.

4. Decision-tree-based Machine Learning Methods Review

e objective of this study is to obtain a model able to represent the relationship

tween input data (CALIOP-measured TAB measurements) and a desired variable

S-measured PBLH). This study utilizes ensemble ML methods based on decision

es (DTs) to estimate this model, due to their ability to handle non-linear problems

ile performing inherent scenario classification [51]. The two methods evaluated were

ndom Forest (RF) and Gradient Boosting (GB). The learning process and model

ucture obtained by RF and GB methods are controlled by configuration variables,

e so-called hyperparameters.

Decision trees (DT) are a simple ML method that recursively partitions the input

ture space X (here, the CALIOP-measured TAB profiles) into K regions R =

, . . . , RK−1. Each region is assigned a prediction value yk (here, the PBLH measured

th RS ). The partitioning criteria of the feature space are defined as the nodes, the

ks between nodes are the branches, and the leaves represent the output values. DTs

e built top-down, recursively splitting the feature space X into regions with the goal
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improving the homogeneity of the target values yk within each split region Rk. DTs

e defined by several hyperparameters, such as splitting criteria, maximum tree depth,

d minimum samples per leaf. Although simple and interpretable, DTs often overfit

ining data and exhibit high variance.

Random Forests (RF) reduce the prediction variance of DTs by bagging, that is,

ing an ensemble of B independently trained DTs, each using a bootstrap sample of

e training dataset [52], and thus reducing the variance of estimations by a factor

. RFs excel at handling high-dimensional data and outliers while minimizing the

timation variance. Their built-in randomness helps mitigate overfitting, particularly

datasets with noisy features, therefore enhancing generalization. Although they

k the straightforward interpretability of DTs, RFs can still reveal meaningful

tterns and feature significance within a dataset. In this work, we resort to the

ndomForestRegressor class of the Scikit-learn Python library for the implementation

RF. More details on the RF class used can be found in [53].

Gradient Boosting (GB) models are an ensemble predictor method similar to RFs

the sense that they combine multiple DTs. However, they build DTs sequentially,

ere each aims to minimize the error of its predecessor [54]. GB models often achieve

gher predictive accuracy than RFs, but are more prone to overfitting.

5. Machine Learning Workflow

Figure 2. ML workflow. The workflow integrates data from radiosondes and

CALIPSO satellite mission, involving data preparation steps like retrieval, intersection,

and feature engineering to form the final dataset (DS). The dataset is then split into

training and testing subsets for model selection, training, hyperparameter tuning, and

evaluation to identify the best predictive model.

This section describes the workflow considered to obtain the ML PBLH estimation

odel. The diagram in Fig. 2 summarizes the procedure followed, which consists mainly

the preparation of the dataset followed by the selection, training, and testing of the

odel.

5.1. Data Preparation.- The raw measurement data for this study consisted of:

vertical profiles measured by RS of pressure (P (z)), relative humidity (RH(z)),
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mperature (T (z)) and horizontal wind (U(z)) as a function of the measurement

itude (z); and (ii) CALIOP-measured TAB profiles. The data preparation steps

re as follows:

i) RS PBLH Retrieval.- PBLH values were calculated from RS measurements using

the bulk-Richardson number method (see Sect. 2.3). The vertical profiles of the

input variables were interpolated at a vertical resolution of 30 m, to match that of

CALIOP. RS-derived PBLH values that exceeded 5000 m or equal to the launch

altitude were excluded. The 5000 m threshold was applied as a quality control

criterion, as higher values are typically the result of algorithmic misidentification

of elevated inversions or free-tropospheric features rather than the true PBLH. RS

launches with measurement gaps greater than 500 m were also removed, resulting

in 2,162,107 PBLH ground-truth records, which make up the RS dataset.

Figure 3. CALIPSO overpasses (gray traces) and Rotenburg RS launch station (red

dot, N 52º49’12”, E 9º55’48”). The red dashed circle indicates the maximum distance

(0.25º) from the RS launching station to consider as a coincidental CALIPSO overpass.

Black traces indicate CALIPSO TAB measurement segments (≈ 20 km long) used for

this particular station.

i) CALIPSO TAB profiles filtering.- About 30% of the of all CALIOP profiles contain

opaque layers, i.e., the backscatter signal is completely attenuated before reaching

the surface, and thus, are not able to provide information for PBLH estimation.

Therefore, profiles which do not have a surface reflection (maximum TAB below
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10−3km−1 · sr−1 at altitudes lower than 3000 m [55]) are filtered out. In order to

eliminate the low-energy laser profiles and malfunctioning cases, laser profiles with

pulse energy lower than 10 mJ [56] or QC flag different than ”0” are removed as

well.

i) CALIPSO pre-processing.- CALIPSO overpasses coinciding with RS launch station

coordinates with a maximum distance of 0.25◦ (≈ 25 km) were selected (red dashed

circle in Fig. 3). CALIOP level-1 TAB profiles were segmented into 2D windows

(black traces in Fig. 3) consisting of 66 laser pulses, spanning approximately 20

km, and 180 vertical samples - covering around 5 km in height, including negative

altitude values. Each resulting segment is a 66×180 matrix of TAB measurements,

corresponding to an input dimensionality of 66× 180 (Fig. 4a).

Figure 4. Pre-processing of CALIOP TAB measurements: (a) TAB profiles with

0.1° horizontal resolution, and (b) vertical TAB profile derived from horizontal median

values.

) Data intersection.- The RS and CALIPSO datasets were also intersected in time,

considering a time difference of up to 3 hours as a coincidence overpass.

) Feature extraction and reduction of dimensionality.- First, to reduce the

dimensionality of the input data of the CALIPSO (66× 180) and the measurement

noise, a median filter [57] was applied. The median filter computes the horizontal

median TAB at each measurement altitude, reducing the dimensionality to 1×180

continuous values (Fig. 4b). The following statistical features were then extracted

from the 1D TAB profiles to further reduce dimensionality and improve training

performance: (i) signal energy (ETAB), (ii) skewness (skew), (iii) kurtosis (kurt)

and (iv) vertical median every 300 m (medz). The 1D-TAB signal energy can be
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obtained as

ETAB =
N−1∑

n=0

TABn
2∆z, (2)

where TABn is the nth sample of the 1D-TAB vertical profile, N = 180 is the

number of samples of the profile and ∆z = 30 m is the height increment.

Furthermore, latitude (lat), longitude (lon), ground altitude (alt), month (month),

solar zenith angle (θs, [58]) and distance to the coast (dist) were considered input

features to provide information about geographical, temporal and climatological

context. Tab. 2 summarizes the features considered for the PBLH estimation

model.

Feature Symbol Units # of Features

Latitude Lat deg 1

Longitude Lon deg 1

Month month month 1

Distance to coast dist km 1

Ground Altitude alt km 1

Solar Zenith Angle θs deg 1

TAB Signal Energy ETAB [km−1sr−2] 1

TAB Signal Kurtosis kurt [−] 1

TAB Signal Skewness skew [−] 1

TAB Vertical Median medz [km−1sr−1] 16

Table 2. Summary of the features used for the estimation model.

5.2. Model Selection and hyperparameter Tuning.- The dataset resulting from the

eparation pipeline (Sect. 2.5.1) is split into training and test subsets using an

proximately 9:1 ratio. The split is performed based on locations rather than individual

mples to ensure that no RS launch station appears in both the training and the test

ts. The test locations are randomly selected from Europe and North America to take

vantage of the higher density of RS stations in these regions. The training set is used

identify and train the best performing model, which is then evaluated in the test set.

The performance of the RF and GB models (see Sect. 2.4) is highly sensitive to

eir hyperparameters, which must be optimized for each specific application through

process known as hyperparameter tuning. In this study, the adjustment was carried

t using a k-fold cross-validation on the training dataset. Specifically, 5-fold cross-

lidation (k = 5) was used, where data was divided into five subsets. In each iteration,

e subset was used for validation, while the remaining four were used for training,

suring that each portion of the data served as both training and validation data across

e folds. To prevent data leakage and ensure reliable evaluation, samples from the same
launching station were not allowed to appear in the training and validation sets. The
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rformance of the model for each hyperparameter configuration was evaluated using

o statistical metrics: R2 and RMSE between the estimated and observed values of

LH.

The hyperparameters tuned for the RF model included the number of estimators,

aximum tree depth, minimum number of samples required for a leaf node, minimum

mber of samples required to split a node, and maximum number of features considered

each tree. In addition to these, the learning rate was also tuned for the GB model.

e complete list of hyperparameters and their corresponding value ranges is provided

Table 3.

Next, from the hyperparameter tuning process, the best-performing model was

lected for PBLH estimation, trained with the entire training dataset, and evaluated

th the test dataset, which is data collected in unseen locations by the model.

Results

1. Data-set analysis

e data set resulting from the preparation pipeline is presented in Sect. 2.5.1 is

mprised of 22,928 records, divided into training (20,636 records) and test (2,292

cords) subsets using an approximate 9:1 ratio, while ensuring that the locations of

e test subset are not used for training.

Fig. 5 shows the coincident points between CALIPSO overpasses and the RS

nches. It can be observed that mainly Europe and North America contain a dense

ud of coincident points, whereas other locations such as South America, East Asia,

d Oceania have very few or no coincident points. This is because CALIPSO follows a

ar-polar orbit, meaning that it overpasses approximately the same location at the

me time, whereas RSs are launched globally at synoptic times of 00:00UTC and

:00UTC, and at 06:00UTC and 18:00UTC at some stations. Consequently, in specific

gions of the globe, there exists a temporal discrepancy exceeding three hours between

e overpassing schedule of CALIPSO and the launching times of RS, rendering them

suitable for comparative analysis.

We selected a random set of locations within Europe and North America (red dots

Fig. 5) as the test set to validate the PBLH estimation model. This is due to

e fact that the model is better suited for the estimation of PBLH in locations with

matological and geographical conditions similar to the training ones (yellow dots in

g. 5). Consequently, extreme or isolated coincidental locations are exclusively utilized

r model training. The datasets include day- and night-time measurements, encompass

tions operational throughout the entire year, and encompass a comprehensive range

meteorological conditions(e.g. cloud or dust scenarios), and measurement locations

e in both rural and urban areas.

Fig. 6 shows the PBLH distributions observed in the training and test datasets. On

itial examination, the training and test datasets exhibit comparable exponential-like
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Figure 5. Collocated CALIPSO overpasses and radiosonde launch points used for

PBLH estimation model training and testing. Yellow dots represent training data

locations, while red dots indicate test data locations.

Figure 6. Histogram distribution of the RS-measured PBLH in the training (panel

(a)) and test (panel (b)) datasets.

stributions of PBLH, with an underrepresentation of higher PBLH (above 1700 m).

e mean values of PBLH for both daytime (PBLHday) and nighttime (PBLHnight)

easurements are observed to align closely between the training and test datasets.

e fact that these two sets are not identical is due to the fact that the RS training set

ographically includes not only the test set but also remote locations around the world.

expected, night-time PBLHs (blue bars) are lower than daytime PBLHs (yellow bars)

d do not exceed 1000 m height.
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2. hyperparameter tuning results

ble 3 shows the results of the hyperparameter adjustment and the optimal

rformance of the ML models considered: RF and GB. The number of tests required

evaluate all the different combinations of hyperparameters is very large (more than
4 tests). Therefore, we first applied a randomized search approach considering 100

ndom sets of hyperparameters to narrow down the best candidates. The randomized

arch results with all the 100 hyper-parameter sets and corresponding cross-validation

dicators are given as supplementary materials. Then, we applied a grid search around

e preliminary best candidates to fine-tune the hyperparameters.

Model hyperparameter Values Range Best
Best Indicators

(RMSE in [m])

RF

n. estimators 50 - 1000, steps of 10 950

R2 = 0.51

RMSE = 375.33

max. depth 1 - 50, steps of 2 19

min. leaf 1 - 20, steps of 1 6

min. split 1 - 20, steps of 1 2

max. features 0.1 - 1, steps of 0.1 0.4

GB

num. estimators 50 - 1000, steps of 10 390

R2 = 0.49

RMSE = 378.89

max. depth 1 - 50, steps of 2 16

min. leaf 1 - 16, steps of 1 6

min. split 1 - 16, steps of 1 2

learning rate 0.01 - 0.1, steps of 0.01 0.03

max. features 0.1 - 1, steps of 0.1 0.4

Table 3. ML models hyperparameter tuning results. In bold are highlighted the best

indicators encountered. The number of tests corresponds to the total combinations of

hyperparameters multiplied by the number of cross-validation folds per test (5 folds).

The tuned RF and GB models provide similar performance, with virtually identical

dicators R2 ≈ 0.50 and RMSE ≈ 375 m. However, the RF model was preferred

er the GB model because of the faster training process (parallelization) and higher

plainability. The chosen RF model that provided the most accurate estimation results

d the following hyperparameters: 950 tree estimators, a maximum tree depth of 19,

minimum samples per leaf, 2 minimum samples to split a node and 40% maximum

mber of features used to obtain each node split (that is, 0.4 in Tab. 3).

3. Global Results

e trained the RF model with the optimal hyperparameters (see Sect. 3.2) using the

ining dataset (28,021 records) and validated on the test dataset (3,113 records). The

LH estimations of the RF model derived from the CALIPSO data (PBLHRF ) were

mpared against the RS PBLH measurements (PBLHRS) as a reference. Note that

e test set locations are in regions of North America and Europe (see Sect. 3.1), and
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us, the validity of the results is limited to those. To quantitatively assess the accuracy

the model prediction, we considered the statistical indicators R2, RMSE, normalized

SE (nRMSE) and the mean signed deviation (MSD). The nRMSE allows for

e comparison between datasets with different ranges and can be formulated as

nRMSE =
RMSE

max(PBLHRS)−min(PBLHRS)
. (3)

The MSD is indicative of the mean bias and is defined as

MSD =

∑N−1
n=0 PBLHRS,n − PBLHRF,n

N
, (4)

ere PBLHRF,n and PBLHRS,n are the nth sample of the test set, and N the number

samples.

The scatter plot in Fig. 7 (panel (a)) illustrates the comparison between PBLHRF

d PBLHRS for the whole test dataset. It can be observed that data samples fall

ng the ideal 1:1 correlation line, and, except for particular outliers, the estimates

ow an acceptable correspondence with the reference measurements, as evidenced by

e statistical indicators RMSE = 278.02 m, nRMSE = 0.11 and R2 = 0.67. It is

portant to note that these results were obtained with minimal data screening, i.e., only

cluding opaque layer measurements and cases of technical malfunction. They therefore

o include multilayer clouds and scenarios with advected aerosol layers (e.g. dust),

owing the robustness of the presented methodology. Furthermore, the RF exhibits

low estimation bias, as shown by a MSD of −1.71 m (0.41% of the mean PBLH

easured by RS), with the mean PBLH estimated by the RF being PBLHRF = 420.14

, and the mean PBLH estimated by the RS being PBLHRS = 418.43 m.

Regardless of its overall efficacy, the RF demonstrated specific limitations. Firstly,

exhibited an underestimation of elevated PBLH values, as indicated by the linear

gression slope and intercept values of 0.65 and 147.28, respectively. This is due to the

ct that PBLH values greater than 2000 m are underrepresented in the dataset (see

nel (b)) [23], which challenges generalization. Secondly, although the RF is able to

timate the PBLH values at lower altitudes, high dispersion is observed, probably due

the presence of the residual layer in night-time regimes.

Regarding the estimation of outliers, a significant overestimation is visible at

er values of PBLHRS (the red ellipse in Fig. 7). These points are mainly made

of observations taken at noon in the summer months. Two potential causes

r these discrepancies can be hypothesized. Firstly, the retrieval of PBLH from

LIOP is based on the vertical distribution of aerosols, which serve as a proxy for

e PBLH, indicating a possible bias relative to the retrievals from RS [59, 60, 61],

ich is based on a thermodynamic definition obtained by meteorological profiles.

wever, more significant discrepancies arise at elevated PBLH values, since the RF

odel relies more on contextual features (see Tab. 4) rather than on CALIOP TAB

easurements to estimate the PBLH, indirectly using information from historical RS

easurements, which results in overestimations. In other words, the model assigns
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Figure 7. Global RF PBLH estimation results. (a) Scatter plot comparing the PBLH

retrieved from CALIPSO using RFs (PBLHCALIPSO, y-axis) against RS retrievals of

the PBLH via the bulk-Richardson number method (PBLHRS) as a reference. (b)

Histogram of the RS-measured PBLH in panel (a).

greater weight to temporal characteristics such as latitude, longitude, hour, month,

d day/night indicators than to direct measurements of CALIOP TAB profiles. This

isinterpretation introduces a bias, causing these contextual features to outweigh the

tual profile data. However, at the same time, incorporating contextual data in the

model allows for robust PBLH estimation in multi-layer or cloudy atmospheric

nditions. Thus, there is a trade-off between feature bias and the model’s ability to

ndle complex atmospheric scenarios.

4. Feature Importance and Ablation Study

e conducted an ablation study to assess the impact of contextual information on the

ecision of RF for the estimation PBLH. To this end, we trained and tested the

st performing RF while selectively excluding input features from three categories:

geographical (latitude, longitude, distance to the coast and ground altitude), (ii)

mporal (month and solar zenith angle) and (iii) statistical descriptors of TAB (energy,

rtosis and skewness).

Tab. 4 presents the results. The study shows that both geographical and temporal

ntexts are crucial for accurate RF performance. Excluding them significantly degrades

e accuracy of the model, with R2 dropping from 0.61 to 0.20 and RMSE increasing
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m 278.02 m to 431.56 m. Temporal characteristics proved to be the most critical:

eir exclusion resulted in the lowest R2 (0.22) and the highest RMSE (427.50 m),

ghlighting their role in distinguishing between day and night, as well as seasonal

riations in PBLH (see Sections 3.6.1 and 3.6.3). Geographical and Statistical

tures had similar impact on the RF performance, improving the test set indicators

R2 ≈ 0.48 and RMSE ≈ 345 m.

xcluded Information Excluded Features Test Set Indicators

Geographical
Latitude, Longitude R2 = 0.48

Distance to Coast, Ground Altitude RMSE = 349.21 m

Temporal Month, Solar Zenith Angle
R2 = 0.22

RMSE = 427.50 m

Geographical and

Temporal

Latitude, Longitude
R2 = 0.20

RMSE = 431.56 m
Distance to Coast, Ground Altitude

Month, Solar Zenith Angle

Statistical Energy, Kurtosis, Skewness
R2 = 0.49

RMSE = 343.01 m

None None
R2 = 0.67

RMSE = 278.02 m

Table 4. Ablation study results. Impact of excluding feature categories on RF

performance for PBLH estimation.

5. Method Comparison with the State of the Art

ble 5 compares the performance and validation conditions of the presented method

th the state of the art. The RF method of this study achieves an R2 value of 0.67 and

MSE of 278.02 m with reference to RS in the test set, providing coverage in Europe

d North America in day / night regimes and in all types of atmospheric scenarios,

at is, without any type of data detection. In contrast, the traditional WCT method

d its variations show R2 values ranging from 0.26 to 0.66, and RMSE values from

0 m up to 560 m, by applying multilayer and cloud scenario screening. For example,

m et al. [24] obtained R2 values of 0.26 (night) and 0.66 (day), with corresponding

SE values of 250 m (night) and 560 m (day), eliminating multilayer cases. Without

ta screening, the results are markedly worse, with R2 = 0.15 (night) and 0.17 (day),

d RMSE = 740 m (night) and 610 m (day). Similar conclusions can be drawn from

e retrieval of PBLH from CALIPSO L-2 aerosol layer product by Leventidou et al.

], which consider the base height of the L-2 aerosol layer product as the PBLH.

eanwhile, the novel graphic algorithm presented by Liu et al. [32] is able to obtain

ore accurate PBLH estimations, with R2 = 0.72 and RMSE = 340 m for the boundary

er at night. However, it also requires filtering out multilayer and cloud scenarios.

With respect to the number of locations used for validation of the methods, note
at the current studies do not utilize more than two locations for a 1-to-1 comparison
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PBLH retrievals with their corresponding reference. Moreover, most of them are

ited to day- or night-time regimes. Therefore, the validity of the results achieved

ay be limited to those locations, providing worse estimation results under different

mospheric or climatologic regimes, for example. Although the results obtained by the

in this study are also limited to the locations of reference RS launch stations, they

an a much wider range of atmospheric and climate regimes, ensuring a much higher

neralization of the results obtained.

Finally, note that most of the methods use ground-based elastic lidars as a reference.

though being a widely accepted method for PBLH retrieval, their estimations have

en reported to differ from RS retrievals under certain conditions, for example,

easuring the residual layer during night periods [11]. Therefore, PBLH estimations

ay correspond to micropulse lidar (MPL) retrievals, but not to real PBLH [11, 62, 63].

Method R2 RMSE [m] Locations Times Reference Screening

RF (this study) 0.67 278.02
North America

Day/Night RS No
and Europe

WCT
0.26 - 0.66 250 - 560 Single Location Day/Night MPL

Multilayer

(Kim et al.[24]) and Cloud

WCT
0.31 277 Single Location Day MPL, RS

Multilayer

(Su et al. [31]) and Cloud

MV + WCT
0.35 - 0.42 - Two Locations Day MPL

Multilayer

(Zhang et al.[23]) and Cloud

Graphics Algorithm
0.72 340 m Single Location Night MPL

Multilayer

(Liu et al. [32]) and Cloud

ase height of CALIPSO L-2
0.28 - Single Location Day MPL Dust Scenarios

.

aerosol layer product [22]

Table 5. Comparison of the state-of-the-art methods for PBLH estimation from

CALIOP measurements.

A notable limitation of our approach is the underrepresentation of extreme PBLH

lues, particularly those above 2000 m, which affects the model accuracy in these

gimes. This is reflected in the slope and intercept of the regression in Figure 7.

itigation strategies include applying stratified sampling, quantile-aware loss functions,

upweighting extreme cases during training. Incorporating such methods could

hance the capacity of the RF model to resolve edge-case atmospheric scenarios.

6. Cluster Results

this section, we evaluate the performance metrics and the complete effectiveness

the RF model in retrieving the height of the PBL under different conditions. The

alysis focuses on evaluating the effectiveness and reliability of the model in different

asons, regimes, and geographical characteristics. The investigation rigorously assesses

e complex interactions between seasonal variations in atmospheric conditions and

stinct regional differences, including land use practices and topographical features,

ich can profoundly affect the precision and reliability of the model’s outputs and

edictions. Through a comprehensive analysis of these multifaceted factors, we aim
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Figure 8. The same as Fig. 7 but clustered as a function of daytime (a) and nighttime

(b) regimes.

elucidate meaningful insights into the model’s inherent strengths and potential

itations, ultimately contributing to the advancement of methodologies and techniques

r retrieving PBL height across diverse environmental contexts and conditions. Toward

is purpose, the prediction results in the test set have been clustered as a function of the

llowing binning variables: (i) day/night regimes, (ii) Season, and (iii) Rural/Urban

ation.

6.1. Day/Night Clustering Results Fig. 8 compares the performance of RF PBLH

timation in the day and night regimes. At first glance, the daytime convective PBLH

ig. 8, panel (a)) exhibits significantly higher values and a larger dispersion compared

the nighttime stable PBLH (panel (b)). The mean PBLH observed by RS (PBLHRS)

rther evidences this difference, with daytime PBLHRS being 836.76 m and nighttime

9.28 m. On the one hand, the PBLH measured in the daytime RS ranges from

rtually 0 m to altitudes higher than 2500 m. This is due to the fact that a wide range

atmospheric conditions (e.g. clouds, rain), latitudes (from 30◦ up to 60◦), seasons and

d uses (urban, rural, industrial, etc.) that influence convective PBLH are included

this cluster. However, night-time PBLH is less affected by these characteristics and

erefore ranges between 0 and 1000 m.

Regarding the performance of the RF estimation, better results are observed for

ytime conditions, mainly due to the stronger aerosol concentration gradient at the

LH, which the RF is able to track. This is reflected in the statistical indicators:

ring the day, R2 = 0.43 and RMSE = 385.07 m (nRMSE = 0.15); at night,

= 0.22 and RMSE = 181.25 m (nRMSE = 0.20). The poorer performance during

ght regimes is probably due to the fact that the residual layer creates ambiguities

en estimating the shallower stable PBL. In terms of estimation bias, thanks to its
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Figure 9. Same as Fig. 7 but clustered as a function of the season: (a) winter, (b)

spring, (c) summer, and (d) autumn.

herent structure, the RF is able to provide low MSD figures, that is, MSD = 33.97

and MSD = −24.05 m in the daytime and nighttime regimes, respectively.

6.2. Seasonal Clustering Results As shown in Fig. 9, seasonality has a clear influence

PBLH variability. Although site-specific characteristics can be observed, particularly

Mediterranean climates due to the diversity of atmospheric flow types [64, 65], overall

asonal patterns are consistent with previous studies in Europe and the US using the

chardson-number approach [66]. During the warmer seasons, spring and summer

anels (b) and (c), respectively), the daytime PBLH values exhibit greater variability,

th mean heights of 1211.77 m and 1122.97 m and peak values reaching 2640 m and

10 m, respectively. This increase is primarily driven by enhanced solar radiation and

onger convective activity. In contrast, during the colder seasons, winter and autumn
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anels (a) and (d)), the dynamic range of daytime PBLH is considerably reduced. The

ean heights at the day drop to 525.92 m and 764.34 m, with maximum values of

70 m and 2070 m, respectively, reflecting weaker surface heating and more limited

nvection. At night, however, this trend reverses: winter exhibits the second highest

ghttime PBLH values after spring, with a mean of 183.40 m, probably due to stronger

matological wind speeds typical of the colder months [66].

Seasonal variations also play a role in the performance of RF, with a larger relative

spersion observed during winter (panel (a)). This is possibly related to the lower

rtical mixing of aerosols in the colder seasons, producing a weaker TAB gradient at

e PBLH which the RF struggles to identify. In terms of estimation bias, the RF

hibits consistent performance in all seasonal groups, with |MSD| lower than 20 m

all seasons except spring (panel (b)). These findings underscore the need for careful

nsideration of seasonal factors when using CALIOP-derived PBLH and highlight the

portance of further refinement in retrieval algorithms to minimize biases and improve

curacy.

Figure 10. Same as Fig. 7 but clustered as a function of the population density: (a)

urban scenario (density higher than 100 people/km2), (b) non-urban scenario (density

lower than 100 people/km2).

6.3. Land Use Clustering Results Finally, we clustered the test dataset as a function

the population density in order to observe how the land use influences the PBLH

d the RF performance. Towards this purpose, we used the Gridded Population of the

orld dataset [67], providing world-wide population density values for the year 2020 at

resolution of 0.1◦×0.1◦ (≈10km×10km). We considered as an urban area coordinates

th population density higher than 100 people/km2, and rural otherwise.

Fig. 10 shows the results of the land use clustering. Surprisingly, higher mean
LH values are observed in nonurban areas. Highly dense urban environments
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pically contribute to higher atmospheric convection due to surface radiating properties,

ildings’ effects on atmospheric dynamics, and human activity, and thus leading to

gher PBLH, whereas non-urban environments mitigate this effect thanks to vegetation,

gher albedo, and soil moisture, among others. In the test dataset, 79. 62% of the

nurban measurements were collected during the day, compared to only 24.43% in

ban areas. This temporal sampling bias contributes to the elevated mean PBLH

served in nonurban clusters. When restricting the analysis to daytime measurements

ly, the mean PBLH in urban areas (PBLHRS = 931.92m) is 302.43 m higher than

rural areas (PBLHRS = 629.49m).

Regarding RF, its performance is better in urban environments, with R2 = 0.66 and

SE = 317.45 m (nRMSE = 0.11), compared to R2 = 0.59 and RMSE = 359.63 m

RMSE = 0.15) in non-urban areas. Although further research for improvement in the

ter is required, an adequate estimate of PBLH in urban areas is of crucial importance

terms of pollution management and early warning, highlighting the potential impact

the RF estimation method.

7. Temporal Series

g. 11 shows an example time series of the PBLH estimated by the RF overlaid on

e CALIOP-measured TAB. In this case, CALIOP follows a north-to-south orbit,

erpassing Europe around local noon in summer. At first glance, the TAB structures

e well captured by the RF, which reproduces a consistent and smooth transition from

PBLH values at high latitudes to steadily increasing values toward the south. This

particularly clear between 43.2◦ and 33.5◦ N, where the RF successfully tracks the

rosol layer at altitudes between 1500 m and 2500 m—values consistent with typical

mmer midday PBLH in southern Europe, when the daytime boundary layer is still

veloping at night.

Between 54.2◦ and 47.2◦ N (covering Germany and the eastern edge of the Alps),

e RF provides meaningful PBLH estimates even under cloudy conditions, benefiting

m contextual predictors such as latitude, longitude, surface elevation, and solar zenith

gle. At latitudes between 63◦ and 58◦ N, the RF estimates a PBLH of approximately

0 m, which aligns with expected values for Scandinavian coastal climates in mid-June

]. Finally, at latitudes above 63◦ N (that is, over the Arctic Ocean), RF performance

grades, reflecting the scarcity of training data available for those regions.

Discussion and Conclusions

is study introduces a novel approach to the estimation of PBLH by integrating a

cade-long, globally sourced RS-derived dataset with raw CALIOP Level 1 profiles,

minating dependence on higher-level products, aerosol classification or atmospheric

ping. The RF model was trained on 28,021 global records and validated on 3,113

cords from Europe and North America, achieving high precision (R2 = 0.67, RMSE =
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Figure 11. Temporal series of RF-estimated PBLH (PBLHRF ) overlaid on

time–altitude CALIOP-measured TAB profiles across Europe on 27 June 2018

at 11:48:11 UTC. The inset map shows the CALIPSO orbit track during the

measurements.

8.02 m) and demonstrating resilience in urban and industrial environments, as well as

both day and night conditions. This performance exceeds that of previous techniques

e Tab. 5) while supporting broad spatial coverage with minimal data filtering

atmospheric screening, i.e., only technical malfunctioning or opaque layer cases,

us enhancing operational feasibility for large-scale applications such as monitoring

quality, adaptation to urban climate, and prediction of pollution. However,

stematic estimation errors were observed—specifically, underestimating high PBLH

lues and miss-estimating low ones—due to four main factors: differences between

rosol-based CALIOP measurements and thermodynamically-based RS measurements,

derrepresentation of extreme PBLH cases in the training set, residual layer effect

night-time TAB measurements, and biases linked to features such as latitude,

itude, and solar zenith angle. These limitations also affected the predictions under

ecific conditions, such as noon in the summer, emphasizing the need for feature

finement and expanded data coverage. The applicability of the model remains

ographically limited to regions with adequate RS–CALIOP overlap, and further

lidation is necessary in tropical, arid, and polar zones. Future work will explore deep

rning architectures to better model spatial dependencies in CALIOP profiles, address

ture-related biases, and integrate hybrid physical–data-driven methods to improve

bustness. Furthermore, ground-based lidar-derived PBLH estimates from large-scale

tworks such as EARLINET in Europe warrant comparison with the retrieval method

oposed in this study. In general, this research advances the state-of-the-art in satellite-

sed PBLH retrieval and offers a scalable and accurate alternative to traditional

ethods, with important implications for environmental monitoring, climate resilience

anning, and evidence-based policy design.
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Retrieval of Planetary Boundary Layer Height from CALIPSO Satellite 
Observations Using a Machine Learning Approach 

By A. Salcedo-Bosch et al. 

Highlights 

• Accurate PBLH Estimation: Random Forest model achieves R² = 0.71 and 
RMSE = 308 m using CALIPSO and radiosonde data. 

• Global Dataset: Trained on 2.16 million radiosonde launches across 693 
stations worldwide. 

• No Data Filtering Needed: Model works in all atmospheric conditions, 
including multilayer clouds and dust. 

• Context Matters: Temporal and geographic features are key to performance
removing them halves accuracy. 

• Urban-Ready and Scalable: Performs well in urban areas (R² = 0.68), 
suitable for air quality and climate monitoring. 
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