Accepted Manuscript

Distribution of sulfur aerosol precursors in the SPCZ released by continuous volcanic degassing at Ambrym, Vanuatu

Jérôme Lefèvre, Christophe Menkes, Philipson Bani, Patrick Marchesiello, Gabriele Curci, Georg A. Grell, Robert Frouin

PII: S0377-0273(15)00226-7
DOI: doi: 10.1016/j.jvolgeores.2015.07.018
Reference: VOLGEO 5597
To appear in: Journal of Volcanology and Geothermal Research
Received date: 20 October 2014
Accepted date: 14 July 2015

Please cite this article as: Lefèvre, Jérôme, Menkes, Christophe, Bani, Philipson, Marchesiello, Patrick, Curci, Gabriele, Grell, Georg A., Frouin, Robert, Distribution of sulfur aerosol precursors in the SPCZ released by continuous volcanic degassing at Ambrym, Vanuatu, Journal of Volcanology and Geothermal Research (2015), doi: 10.1016/j.jvolgeores.2015.07.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Distribution of sulfur aerosol precursors in the SPCZ released by continuous volcanic degassing at Ambrym, Vanuatu

Jérôme Lefèvre*

LEGOS/MIO, IRD (Institut de Recherche pour le Développement), 98800 Nouméa, New Caledonia

Christophe Menkes

LOCEAN, IRD (Institut de Recherche pour le Développement), 98800 Nouméa, New Caledonia

Philipson Bani

LMV, IRD (Institut de Recherche pour le Développement), 63000 Clermont-Ferrand, France

Patrick Marchesiello

LEGOS, IRD (Institut de Recherche pour le Développement), Université de Toulouse, 31400 Toulouse, France

Gabriele Curci

CETEMPS, Department of Physics, University of l’Aquila, L’Aquila, Italy

Georg A. Grell

Earth Systems Research Laboratory of the National Oceanic and Atmospheric Administration (NOAA) Boulder, Colorado 80305-3337, USA

Robert Frouin

 Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0224, USA

Submitted to Journal of Volcanology and Geothermal Research

July 30, 2015

*Corresponding author address:
Jérôme Lefèvre, IRD, Nouméa center,
BP A5, 98848 Noumea cedex, New Caledonia
Email: jerome.lefevre@ird.fr
ABSTRACT

The Melanesian Volcanic Arc (MVA) emits about 12 kT.d\(^{-1}\) of sulfur dioxide (SO\(_2\)) to the atmosphere from continuous passive (non-explosive) volcanic degassing, which contributes 20% of the global SO\(_2\) emission from volcanoes. Here we assess, from up-to-date and long-term observations, the SO\(_2\) emission of the Ambrym volcano, one of the dominant volcanoes in the MVA, and we investigate its role as sulfate precursor on the regional distribution of aerosols, using both satellite observations and model results at 1°x1° spatial resolution from WRF-Chem/GOCART. Without considering aerosol forcing on clouds, our model parameterizations for convection, vertical mixing and cloud properties provide a reliable chemical weather representation, making possible a cross-examination of model solution and observations. This preliminary work enables the identification of biases and limitations affecting both the model (missing sources) and satellite sensors and algorithms (for aerosol detection and classification) and leads to the implementation of improved transport and aerosol processes in the modeling system. On the one hand, the model confirms a 50% underestimation of SO\(_2\) emissions due to satellite swath sampling of the Ozone Monitoring Instrument (OMI), consistent with field studies. The OMI irregular sampling also produces a level of noise that impairs its monitoring capacity during short-term volcanic events. On the other hand, the model reveals a large sensitivity on aerosol composition and Aerosol Optical Depth (AOD) due to choices of both the source function in WRF-Chem and size parameters for sea-salt in FlexAOD, the post-processor used to compute offline the simulated AOD. We then proceed to diagnosing the role of SO\(_2\) volcanic emission in the regional aerosol composition. The model shows that both dynamics and cloud properties associated with the South Pacific Convergence Zone (SPCZ) have a large influence on the oxidation of SO\(_2\) and on the transport pathways of volcanic species across the South Pacific atmosphere. For example, in the tropical cloudy air, the sulfate production in the aqueous phase is very efficient, resulting in the formation of a large cloud of highly scattering sulfate aerosols advected horizontally to Eastern Indonesia, in agreement with the AOD feature captured by MODIS/Aqua, but missed in CALIOP/CALIPSO (lidar) products. Model sensitivity experiments indicate that aerosol re-suspension due to evaporating droplets is a significant pathway for the supply of volcanic sulfur species in the remote marine boundary layer. By strongly modulating the irreversible loss due to wet scavenging, this aerosol process has a similar influence on the sulfur burden as natural emission from volcanoes or biogenic sources like
dimethyl sulfate (DMS). The results emphasize the importance of MVA passive degassing and SPCZ dynamics on the aerosol background, and raise questions about potential impacts on the local climate and marine ecosystems.

Keywords: regional aerosol climatology, SPCZ dynamics, SO$_2$ dispersal, aerosol modeling, remote sensing, volcanic plume impacts
1. INTRODUCTION

Despite the recognized impact of volcanic degassing on the environment and climate (see Robock, 2000 and Oppenheimer, 2011 for a review), knowledge of its contribution to greenhouse gases and aerosol burdens in the atmosphere remains incomplete. This is a consequence of large uncertainties in the intensity and chemical composition of volcanic emissions. The most widely used inventory by Andres and Kasgnoc (1998) accounts for a global SO2 emission rate of 36 kT.d⁻¹, but recent advances in the monitoring of gas species from satellite supported by new ground observations suggest to double the SO2 emission rate (69 kT.d⁻¹, Dentener et al., 2006). However, without additional constraint from long-term ground field studies, satellite limitations may strongly affect the estimation of volcanic emission budget, as reported recently in McCormick et al. (2012) and Bani et al. (2012) for volcanoes forming the Melanesian Volcanic Arc. Uncertainties are largely related to the continuous (i.e. passive or non eruptive) volcanic degassing from craters, fissures and fumaroles occurring in silent (or quiet) phase. This source of aerosol precursors quietly and continuously released in the lower troposphere is less spectacular than the abrupt change in stratospheric aerosol burdens induced by explosive events, but the development of more sensitive top-down methods and extensive field studies converge to stress their key role in the global sulfur emission to Earth’s atmosphere. For example, in the Melanesian Volcanic Arc, one of the most active volcanic regions on Earth, the release of sulfur gases from passive volcanic degassing is dominant, with a contribution to the regional volcanogenic budget estimated of about 96% (McCormick et al., 2012). At present, uncertainties in volcanic emissions but also in chemical processes and tropospheric transport of volcanic volatiles reduce our capacity to assess their precise role on the Earth’s radiation balance and ecosystems.

There is a growing body of literature attesting to the global and regional impact of volcanic degassing on climate, aerosol composition and micro- and macrophysical properties of clouds and climate (see Schmidt et al., 2012, for a review). Changes in microphysical and reflectivity of clouds have been reported in context of tropospheric volcanic plumes too (Gassó et al., 2008, Yuan et al., 2011 and Ebmeier et al. 2014). Modeling studies suggest that up to 40% of the global tropospheric sulfate aerosols burden may originate from volcanoes (Graf et al. 1997). Despite difficulties in estimating the radiative impact of tropospheric aerosols in current model
simulations (Haywood and Boucher, 2000), sulfur species passively released from volcanoes in the troposphere are believed to impact the Earth’s radiation balance significantly (Graf et al. 1997, Schmidt et al. 2012). Since sulfate aerosol particles have sizes similar to visible wavelengths, i.e., a typical effective radius \(r_e \) of 0.2 µm, and since their single-scattering albedo is equal to 1 (i.e. no absorption), they strongly backscatter (solar) shortwave radiation. Thus, due to light scattering, this aerosol type induces a cooling of the atmosphere, called the Direct Radiative Effect (DRE). Such aerosol forcing explains the significant climatic perturbation after the release of stratospheric sulfate aerosols by explosive volcanic eruptions (Robock, 2000). In addition, sulfate aerosols exert an Aerosol Indirect Effect (AIE). By increasing the Cloud Condensation Nucleii (CCN) population, these water soluble aerosols have the capacity to affect cloud microphysics and radiative forcing (the "first indirect" or "cloud-albedo" effect; Twomey 1977) and cloud lifetime (referred to as the "second indirect" effect; Albrecht, 1989, and Takemura et al., 2005). Schmidt et al. (2012) have estimated the AIE induced by tropospheric volcanic aerosols for pre-industrial conditions by assuming a -50%/+100% uncertainty range in the observed volcanic degassing flux. Their estimation for volcanic induced cooling for pre-industrial conditions is in the range [-1.56 to -0.77] W.m\(^{-2}\). While the volcanic AIE for present-day conditions is now smaller by a factor of two due to change in the aerosol background, the volcanic cloud-mediated cooling is of the same order of magnitude as the present-day anthropogenic cloud-albedo effect evaluated in the range [-1.80 to -0.30] W.m\(^{-2}\) (Forster et al., 2007). The direct effects induced by volcanic and anthropogenic sulfur emissions are also similar in magnitude, estimated at about -0.15 W.m\(^{-2}\) and -0.17 W.m\(^{-2}\) respectively (Graf et al., 1997). These attempts are indicators of the capacity of both volcanic and anthropogenic AIE and DRE to balance global warming induced by greenhouse gases (between [+2.07 to +2.53] W.m\(^{-2}\)), and they emphasize the need to reduce uncertainties in volcanic sulfur emission and improve our knowledge of their distribution and the processes at work in the atmosphere.

Recent observations in halogen-rich volcanic plumes suggest that continuous volcanic degassing acts as a source of halogen radicals (bromine, BrO and chlorine, ClO) that deplete O\(_3\) (i.e., Bobrowski et al., 2003; Gerlach, 2004; von Glasow et al., 2004). O\(_3\) is a primary source of hydroxyl radicals (OH) and its depletion may change the oxidizing capacity of the troposphere, with consequences on atmospheric chemistry near volcanic arcs (Vance et al., 2010; Boichu et al., 2011). Halogen-rich volcanic plumes may also act as an additional natural source of
stratospheric halogen after convective transport, thus exerting a similar role in the natural stratospheric ozone depletion as the one signaled for very short-lived halocarbons emitted from the ocean (Liang et al. 2010). Reactive halogens and SO$_2$ are also suspected to exert a strong control on the oxidation of trace metals co-emitted in volcanic plumes. For example, using field- and model-based results, Von Glasow (2010) suggested that volcanogenic mercury (Hg) might have larger effects on health and environment than previously thought due to the rapid oxidation of Hg in the plume. Since SO$_2$ is generally used as a proxy to derive budgets of other volcanic volatiles, including halogens, (e.g., Bani et al., 2009; McCormick et al., 2012), improvement in our knowledge of volcanic SO$_2$ budget and our capacity to understand their transport pathways may more generally enlighten the potential impact of passive degassing on the atmosphere, climate and Earth’s ecosystems.

Recent field studies dedicated to SO$_2$ emission budget for the Melanesian Volcanic Arc (MVA) confirmed the very strong continuous degassing rate due to the main volcanoes of Papua New-Guinea, the Solomon Islands and the Vanuatu archipelago, representing altogether nearly 20% of global emission (McCormick et al., 2012; Bani et al., 2012). However, since sporadic explosive phases or extreme degassing events (Bani et al. 2009) are not considered, the MVA contribution to global emission may still be easily underestimated. Together with volcanoes of the eastern maritime continent (Southeast Asia), the MVA region forms a sulfur-rich atmosphere, as previously shown in Jones and Christopher (2011). The main objective of our study is to describe aerosol distribution in the SW Pacific, including the MVA and eastern maritime continent. Using recent emission inventories for natural and anthropogenic sources, this work is more specifically dedicated to the role of volcanic passive degassing, aerosol processes and transport pathways in the observed tropospheric aerosol composition.

Our approach relies on numerical atmospheric modeling and satellite observations of SO$_2$ burden and aerosol properties by OMI (Ozone Monitoring Instrument), CALIOP and MODIS. The model is based on the Weather Research and Forecast (WRF) model coupled with Chemistry (WRF-Chem; Grell et al. 2005) including the aerosol schemes of the Goddard Chemistry Aerosol Radiation and Transport model (GOCART; Chin et al. 2000a,b). In previous studies, WRF has been successfully used to investigate the South Pacific cyclonic activity (Jourdain et al. 2011) and the weather regimes and mesoscale interactions with tropical islands of the same region
(Lefèvbre et al. 2010). For the present study, model adjustments were needed for improving the representation of aerosol sources and sinks. Some satellite measurement biases are also uncovered by cross-examination of aerosol optical properties.

The paper is organized as follows. In Section 2, we start with preliminary remarks on regional volcanic emissions and atmospheric dynamics. In Section 3, the satellite data and methods used to assess gas and aerosol compositions are presented. In Section 4, we provide a description of the modeling system, including details on the FlexAOD post-processor used to compute offline the aerosol optical depth with recent revisions for aerosol microphysics and optical properties. In Section 5, we evaluate the climate model through its cloud, precipitation and dynamical features that are known to control aerosol lifetimes and distributions, and we describe the adjustment of sea salt source function in the aerosol model. In Section 6, we investigate the influence of Ambrym volcanic degassing on the troposphere composition using satellite observations and model results. In Section 7, we assess the respective role of sources, transport and sinks, using the model results and a budget equation for sulfur components. Here, we detail the South Pacific Convergence Zone (SPCZ) chemical and transport processes controlling the distribution of sulfur species released from Ambrym. We also conduct sensitivity experiments that provide error bars associated with uncertainties in model treatment of sources and removal processes. In the last section, we discuss the potential implications of passive volcanic degassing for the chemistry and climate of tropical regions and propose arguments to improve aerosol modeling.

2. PRELIMINARIES

The Vanuatu volcanic arc, located in the southeastern part of the MVA (Figure 1, inset), is a remote and pristine fragmented tropical archipelago. The Ambrym volcano was recently identified as the primary source of volcanic volatiles in Vanuatu. Using ground-based UV spectrometers supported by OMI survey, Bani et al. (2012) have characterized the huge and continuous SO₂ degassing of 5.4 kT.d⁻¹ from Benbows and Marum, two active craters at the summit of Ambrym (16.14°S; 168.0°E and 1270 m). Considering the global SO₂ volcanic emission of 69 kT.d⁻¹, Ambrym is considered as one of the largest natural emitter, comparable to Etna. Recent studies have shown that Vanuatu’s inhabitants are exposed to sulfur and halogen rich plumes emanating from Ambrym, with consequences on health, food crops and water
supplies (Allibone et al. 2010; Cronin and Sharp, 2002). During the sporadic phase of extreme
degassing in the 2004/2005 austral summer, Bani et al. (2009) measured prodigious degassing
rates of 15-23 kT.d\(^{-1}\) for SO\(_2\) and 2-4 T.d\(^{-1}\) for BrO. They suspected that a major release of
volcanic volatiles in chemically active volcanic plumes would have a large impact on both the
oxidants background and the regional radiative budget. Our investigation is thus focused on
Ambrym as a necessary step towards understanding of air and land pollution by volcanic species
in the SW Pacific.

2.1. Volcanic degassing inventory in the MVA

The geographic location of the main sources of volcanic SO\(_2\) in the SW Pacific is displayed in
Figure 1 and their emission rate is summarized in Table I. Emission rates are provided by the
AeroCom inventory (Aerosol Comparisons between Observations and Models, Dentener et al,
2006), with the exception of Ambrym whose emission rate is taken from Bani et al. (2012).
Table I indicates that continuous degassing from volcanoes in the MVA and eastern maritime
continent may account for 17.2 kT.d\(^{-1}\). Compared with the original AeroCom budget of 14.05
kT.d\(^{-1}\), the present increase of 22.5% due to updated Vanuatu emissions is significant. Note that
the total MVA SO\(_2\) emission budget for non-eruptive activity is greater than the total
anthropogenic sources from industrial countries in the region, including Indonesia, Philippines,
Australia and New-Zealand. Furthermore, in the region, SO\(_2\) degassing from volcanoes also
exceeds the natural SO\(_2\) emission resulting from oxidation of DiMethyl Sulfide (DMS), a volatile
biogenic sulfur compound emitted from marine organisms, known to exert forcing on climate
and atmospheric chemistry (Ayers et al. 2000). However, like volcanic emission, this SO\(_2\) source
is subject to large uncertainties, depending on the choice of air-sea exchange parameterization
and climatological data (Boucher et al. 2003; Faloona 2009; Lana et al. 2011).

2.2. The South Pacific Convergence Zone

A detailed description of the climate features and large-scale flow patterns in the South Pacific is
given in Fuelberg et al. (2002) in the context of the Pacific Exploratory Mission in the Tropics
(PEM-Tropics A and B), while Fenn et al. (1999) discussed the aerosol (and Ozone) distributions
in the SPCZ in relation with the convective activity during PEM-Tropics A. Continuous
degassing from MVA volcanoes occurs in the SPCZ, the largest convective area of the South Pacific. The SPCZ is associated with deep convective clusters and intense surface precipitation (Figure 1). This major regional atmospheric feature plays a key role in the Earth climate system (Cai et al., 2012). It also affects aerosol processes and makes aerosol observations difficult. More specifically, thick clouds in the SPCZ may strongly impair the retrieval of volcanic emission by interfering with satellite sensing of trace gases and enhance the rate of SO$_2$ depletion by oxidation and scavenging (McCormick et al., 2012). Moreover, the dispersion and vertical motion of volcanic volatiles in plumes due to convection and turbulent mixing introduce additional errors in the retrieval of emission budgets. Clearly, the MVA environment makes a challenge for accurate measurements of volcanic species. The modeling of meteorological and aerosol processes is equally difficult (Textor et al., 2007). Mattijsen et al. (1997) have shown that the SO$_2$ lifetime is strongly dependent on the model representation of chemical weather, through accurate simulation of cloud macrophysical properties. In the tropics, the fate of passive tracers is also very sensitive to the model treatment of turbulent mixing by convective transport (Hoyle et al., 2011). For reliable results, these authors further recommend to accurately model both the location of convective transport and the spatial patterns of pollutant emission. Therefore, particular attention has been given in this study to provide accurate volcanic sources, including fluxes and plume heights, and representation of meteorological parameters involved in chemistry, transport and removal processes. Such preconditions are not systematically met in global models with coarse horizontal and vertical resolution or with poor model treatment of aerosol processes interacting with meteorological parameters (Textor et al., 2007) leading to a misrepresentation of the environmental impact of tropospheric volcanic plumes.

3. SATELLITE DATA

3.1. Volcanic SO$_2$ mass burden and emission rate

The Dutch-Finnish OMI sensor, onboard the National Aeronautics and Space Administration (NASA) Aura satellite since July 2004, is an hyperspectral UV/Visible spectrometer dedicated to the daily, contiguous monitoring of SO$_2$ and other trace gases with a nadir spatial resolution of 13x24 km (Levelt et al., 2006; see sensors details in Table II). The gas detection capability exploits the SO$_2$ UV absorption feature at 230-330 nm (Krotkov et al. 2006). Improvements in the
SO₂ retrieval algorithm and its detection limit of about 0.6 Dobson Units (D.U) now allow the retrieval of SO₂ emission from both passive volcanic degassing and high eruptive plumes injected into the stratosphere (e.g., Carn et al. 2007, Bani et al. 2012, McCormick et al. 2012). OMI SO₂ Level 2, Version 3 products provide together sensor information, quality flag, cloud radiance fraction and four retrievals of SO₂ Vertical Column Density (VCD). Each OMI SO₂ VCD is given for an a-priori SO₂ vertical profile with distinct center of mass altitude (see Krotkov et al., 2006, for details). The center of mass altitude of lower troposphere (TRL) SO₂ VCD is located at 2.5 km and is used in this study to derive the volcanic SO₂ burden due to Ambrym. The center of mass altitude of TRL VCD is within the range of previous reported plume altitudes (Bani et al. 2012) with a plume top capped by the trade inversion at 2.5-3 km in the region (see Fig. 2 in Lefèvre et al., 2010). Since January 2009 onward, the OMI sensor has suffered from the occurrence of erratic instrumental errors (called "row anomalies"; see McCormick et al. 2012), restricting our study with OMI to the prior period.

For each daily image, the SO₂ burden in a regional box centered on the source of emission is calculated by summing all OMI pixels with SO₂ VCDs above 0.6 DU (labeled with "fi" in Eq. 1, "nofi" stands for pixel below that limit) after excluding sensor anomalies and pixels with low Sensor Zenith Angle (< 70°) and cloud or glint contamination (Bani et al., 2009, 2012). For each OMI pixel above the threshold, the SO₂ mass calculation is performed through Eq.1 (see Pinardi et al., 2010):

\[\text{Mass}_{SO_2} [Kg] = (VCD_{fi} - mean(VCD_{nofi})).\text{AirPix}_{fi} \cdot \frac{M_{SO_2}}{N_A}, \]

(1)

where \(M_{SO_2} (=64 g/mol) \) and \(N_A \) are the SO₂ molar mass and the Avogadro number respectively, \(\text{AirPix} \) is the pixel area (m²), and \(VCD \) is the SO₂ column amount expressed in molecules.m⁻². The term \(mean(VCD_{nofi}) \) is computed by averaging all OMI pixels in the regional box with value below 0.6 DU. This value is representative of the SO₂ background contaminated by noise. Later in Section 6.1, Eq.1 will be used with the model SO₂ VCD outputs to derive the simulated OMI top-down estimate of SO₂ mass burden. Since the model has larger “pixel” cells in comparison with OMI, the simulated sensor detection limit is scaled down to 0.017 DU against 0.6 DU in OMI. That factor of 35 is given by the surface area ratio between model and OMI pixels (105x105km² and 13x24km², respectively).

From Eq.1, one can derive the SO₂ emission rate \(Q \) of the source:
\[Q = \frac{\text{Mass}_{SO_2}}{t}, \]

where \(t \) is an estimate of \(SO_2 \) lifetime within the plume that varies with the local climate and is accessible through field studies (McCormick et al. 2012). Ground or aircraft based observations close to the source are commonly required to constrain top-down estimates of \(SO_2 \) emission rate (Spinei et al., 2010; Bani et al. 2012). In the absence of such observation, estimations are not straightforward. The accuracy of OMI \(SO_2 \) burden is not only limited by swath sampling, detection limit and sensor errors but also by cloud contamination, removal and dilution mechanisms occurring in the plume. Moreover, the reported \(SO_2 \) lifetimes in volcanic plumes are generally shorter than the delay between successive OMI swaths (< 1 d) and strongly rely on the environment (ambient humidity) and oxidizing nature of the plume (Oppenheimer, 2011). Clearly, inappropriate \(SO_2 \) lifetimes may result in systematic underestimation of \(SO_2 \) fluxes (McCormick et al., 2012). To evaluate such error, we compare the simulated volcanic \(SO_2 \) burden with the quantity derived from OMI using Eq.1 applied to Ambrym volcano. Knowing its emission rate and using Eq.2, we will show how dilution, removal processes, cloud and swath screening combine together to reduce the top-down estimate of \(SO_2 \) emission rate.

3.2. Aerosol burden comparisons using AOD

Flying within NASA’s A-Train, in concert with Aura/OMI within a 15-min time window, MODIS/Aqua (passive radiometer) and CALIOP/CALIPSO (lidar) probe the aerosol and cloud optical properties of the same air mass. The aerosol Level 3 product (MYD08_D3 Collection 5.1, see Table II) provides a daily estimation of the total aerosol optical depth (AOD or \(\tau \)). Referred to as the extinction of solar radiation by aerosols, this quantity integrates the nature of the aerosol (i.e. the aerosol type defined in regard of its absorption and scattering properties) and their respective mass concentration and size, with changes due to hygroscopic growth (see Chin et al. 2002 and details in appendix B.). MODIS AOD are derived using improved algorithms detailed in Remer et al. (2005). They operate by matching six observed reflectances in the solar spectrum (0.47-2.1\(\mu \)m) to lookup tables build using a Radiative Transfer Model that simulates spectral reflectance for expected aerosols conditions. Along track MODIS AOD retrievals with a spatial size of 10x10 km\(^2\) are binned to provide the daily 1x1° AOD dataset in MYD08_D3. To remove cloud artifacts and sun-glint contamination, only 10x10 km\(^2\) AOD retrievals having a confidence
flag ≥ 1 are considered in this processing. Extensive validations against AERONET observations state that the AOD uncertainty is $\tau_{error} = \pm (0.03 \pm 0.05 \tau)$ over the ocean (Remer et al. 2006) and that the product can be used quantitatively for aerosol model validation (e.g., Chin et al., 2002).

As a valuable surrogate for the total aerosol burden, both MODIS and simulated AOD are combined to derive the distribution of aerosol over the SW Pacific, while differences are interpreted in relation with sources and model treatments for aerosol processes.

3.3. Structure of the aerosol composition

The Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) provides supplemental details on the structure of the aerosol composition that are overlooked in Visible-IR imagers like MODIS. CALIOP data version 3 products provide six aerosol types classified by the cloud-aerosol discrimination (CAD) algorithm (Liu et al., 2009; Winker et al., 2009). These types are clean marine particles, polluted dust, dust, clean continental, polluted continental and biomass burning particles (or smoke). They are associated with each aerosol layer identified by the CAD along the vertical laser beam, as detailed in Appendix A. CALIOP gives additional information: the vertical profile of the aerosol extinction coefficient (σ_{aer}, unit m$^{-1}$; see Eq.B.1) at $\lambda=532$nm and the altitude and thickness of the aerosol layer. They are useful in documenting the vertical distribution of aerosols and tracking polluted air masses, like volcanic plumes (e.g., Spinei et al., 2010). The CALIOP AOD at $\lambda=532$nm is calculated by vertically summing for each aerosol layer its specific σ_{aer}.

In this study, the structure of the aerosol composition is given by computing the contribution of each aerosol type to total AOD, both in the model and CALIOP observations. The simulated AOD is computed at $\lambda=550$ nm to be consistent with MODIS AOD, neglecting the wavelength dependence of AOD between 532 nm and 550 nm (the error is small between 2-4%; Kittaka et al. 2011). However, it is worth noting that the definition of aerosol types between CALIOP and GOCART differs. The aerosol type defined in CALIOP represents typical atmospheric mixtures of components as observed by AERONET (Omar et al., 2005; Winker et al., 2009). These components are comprised of dust like substances (DU), carbonaceous component (CC) formed by soot and burnt biomass substances, sea salt (SS) and water soluble aerosols (dominated by sulfate SU and nitrate substances). Therefore, CALIOP σ_{aer} represents the volume-averaged extinction coefficient due the aerosol mixtures, while GOCART provides single-component
effects. This point will be considered in Section 6.2, when comparing model results with satellite observations.

4. THE REGIONAL CLIMATE AND CHEMISTRY MODEL: WRF-CHEM/GOCART

4.1. Description of WRF-Chem

Simulations of gas and aerosol concentrations are made with Version 3,3.1 of the WRF-Chem meteorological model (Skamarock et al. 2008) coupled online with chemistry (Grell et al., 2005). The model has multiple choices for gas-phase chemistry and aerosol modules, with some tied to cloud microphysics and radiation modules, allowing investigations of aerosol forcing (e.g. Fast et al. 2006). In the present study, the GOCART sulfur chemistry and aerosol model (Chin et al. 2000a,b) is used to simulate the emission, transport and removal of five major tropospheric aerosol types introduced above (DU, SS, SU and CC composed of Organic Carbon, OC, and Black Carbon, BC) and the chemical transformation of sulfate gas precursors, i.e., DMS, emitted from the marine biological activity, and SO\(_2\), released from anthropogenic and natural sources (e.g., volcanoes). Methane Sulfonic Acid (MSA), a by-product salt from the oxidation of DMS, is also simulated in GOCART. This computationally inexpensive sulfur chemistry and aerosol model is known to deliver global results with good skills (Chin et al. 2000a,b and Textor et al. 2007).

4.2. Model configuration and physical setup

The WRF-Chem model is implemented over the SW Pacific domain between [40°S-13°N] and [112°E-142°W], centered on Vanuatu, with a 1-degree horizontal spacing. The main difference with our past configurations (Jourdain et al., 2011) is the use of a suite of physical packages adapted from the Community Atmosphere Model version 5 (CAM, Collins et al., 2004). The physics configuration includes the use of the moist turbulence Planetary Boundary Layer (PBL) and shallow convection unified parameterizations from the University of Washington (Bretherton and Park, 2009, and Park and Bretherton, 2009, respectively), the Zhang and McFarlane (1995) convective bulk mass flux scheme for deep convection, the Purdue Lin microphysics scheme
(Lin et al. 1983) and the CAM radiation module for both longwave and shortwave radiation (details in Table III). The physics package and interaction with chemistry are also displayed in Figure C.1. After careful validation (Sec. 5), we found the selected physics and cloud microphysics package appropriate to our aerosol problem. WRF-Chem is run with the GOCART bulk aerosol model that has no aerosol-cloud and radiation interaction or ozone chemistry. To accurately capture the tropical tropospheric meteorology and chemical processes, the vertical column is discretized into 35 terrain-following σ–levels, with 20 levels below 500 hPa. The model top is fixed at 50 hPa and the surface layer is approximately 15-25 m thick, with a mid-point close to 10 m. According to Hoppel et al. (2005), our surface refinement is sufficient to model the process of generation and sedimentation of sea salt aerosols without applying a correction term. This is an improvement from global models that have coarser vertical resolution in the boundary layer (see Fan and Toon, 2011). Note that a horizontal resolution of 1-degree is too coarse to capture the wide range of processes associated with mesoscale dynamics, especially around high tropical islands (Lefèvre et al., 2010 and Jourdain et al., 2011, for details) and they are here assumed unimportant to large-scale transports. This assumption should be checked in further studies.

Surface emission, vertical distribution, chemical transformation and scavenging of atmospheric species are strongly dependent on the model representation of regional climate (see Mattijsen et al. 1997; Textor et al. 2006, 2007; Faloona, 2009; George and Wood, 2010). With a grid spacing of 1°, the subgrid vertical motion of species particularly depends on the performance of the convection scheme and treatment of associated tracer transport (Hoyle et al. 2011). A large effort was thus devoted to validate the meteorology, cloud macrophysics, and surface fluxes, conducting diagnostic studies of SPCZ properties, including AMSRE rain, cloud, and water content, MODIS cloud fraction, Outgoing Longwave Radiation from NOAA and scatterometer winds (Sect. 5).

4.3. Aerosol processes in WRF-Chem/GOCART

Original features of GOCART for aerosol treatments and sulfur chemistry are detailed in Chin et al. (2000a,b and 2002). GOCART is a bulk aerosol model that provides only the total mass within each size bin. There are five size bins for DU (details in Zhao et al., 2010) and four size bins for SS (details in Appendix B), while others aerosols are simply represented by their total
Aerosol processes are implemented through several specific modules in the WRF-Chem/GOCART system (Figure C 1). They include (1) surface emission, with magnitude controlled by meteorology for dust, sea salt and DMS, (2) gravitational sedimentation and dry deposition, (3) vertical turbulent mixing, (4) convective tracer transport, and (5) grid-and sub-grid scale wet deposition. Advection and lateral diffusion of tracers are computed using the monotonic advection scheme implemented in the Advanced Research Weather dynamic core (Wang et al., 2009). Compared with the original features of GOCART (Chin et al., 2000a,b and 2002), successive improvements, including our own modifications and their integration within WRF-Chem, have led to significant changes. In Appendix C and Figure C 1 we give a description of the current modeling system based on WRF-Chem/GOCART and detail the nature of our changes. We also provide details about the major physical processes affecting the tracer fate in Appendix C.

Since the mass flux and altitude reached in deep convective updrafts are quite large in the tropics, we used the vertical transport of tracers from the Zhang and McFarlane convection scheme (see details in Appendix C and Figure C 2). In WRF-Chem current public releases, the tracer redistribution by shallow convection is not implemented within the University of Washington physical suite. Therefore, in this study the lower troposphere transport associated with subgrid-scale shallow convection is discarded (Appendix C). A second limitation is the under-estimation of wet scavenging, only represented by grid-scale precipitation, not by convective (subgrid-scale) precipitation. Since large uncertainties remain on the parameterization of convective wet deposition (Croft et al. 2012; Textor et al. 2006), this aerosol process was not included in our setup (Appendix C). Sensitivity to this missing sink process will be addressed in Section 7.3. On the other hand, the grid-scale wet deposition scheme has been made more complex, by implementing the microphysical treatment of Giorgi and Chameides (1986) and Balkanski et al. (1993) for in-cloud scavenging of tracers (or rainout by nucleation), below-cloud scavenging (or washout by impaction) and re-suspension of evaporating rain droplets (Appendix C). Aerosol microphysical processes influencing the distribution of tracers will be discussed in Sections 7.2 and 7.3. Other considerations for vertical turbulent mixing and known limitations are given in Appendix C.

4.4. The GOCART sulfur chemistry module
The original sulfur module is described in Chin et al. (2000a). The chemical production of SO\(_2\) occurs via DMS oxidation within the marine boundary layer, while the chemical loss of SO\(_2\) is represented by two main transformations: the reaction with radicals OH and NO\(_3\) in the gas-phase and with H\(_2\)O\(_2\) in the aqueous-phase, the latter being most efficient in the presence of cloudy air. The SO\(_2\) depletion by heterogeneous reactions on the surface of aerosols (Gray et al., 2010) or by oxidation with O\(_3\) in the aqueous-phase (Liang and Jacobson, 1999) is currently not included in GOCART. In addition to these simplifications, pH variations in cloud droplets are neglected and pH is fixed at 4.5, which avoids dealing with SO\(_2\) lifetime dependency on pH (Liang and Jacobson, 1999; Matthijsen et al., 1997).

The in-cloud reactions are diagnosed using the cloud liquid water content (CLW) and fractional cloudiness (FC) provided by the Purdue Lin (1983) bulk microphysics module and the CAM radiation module respectively. FC is diagnosed according to the scheme of Xu and Randall (1996; see Table III). In cloudy cell and within the cloud fraction, the formation of SU is governed by the concentration of the limiting reagent, i.e., the lesser amount between SO\(_2\) and H\(_2\)O\(_2\) (Chin et al., 2000a). Chemical species are considered well mixed in the aqueous phase, and Henry’s law at equilibrium governs the dissolution of the gas-phase species into the cloud water. Table IV reports rates of gas- and aqueous-phase reactions, and the dissociation rate of species and their gas-water partitioning coefficients.

In the absence of Ozone chemistry in our model setup, concentrations of short-lived radicals OH, NO\(_3\) and H\(_2\)O\(_2\) molecules are prescribed using three-dimensional, monthly averaged fields from the Global Modeling Initiative (GMI, Douglass et al. 2004). Diurnal variations of these oxidants are included following the same method applied in Chin et al. (2000a). The fast in-cloud reaction SO\(_2\)+H\(_2\)O\(_2\) is a sink for H\(_2\)O\(_2\), which we replenish with an e-folding time of 3 hours like in Chin et al. (2000a).

4.5. Natural and anthropogenic emissions

Ground sources of natural and anthropogenic trace gases and aerosols are specified using the pre-processor PREP-CHEM-SRC (Freitas et al. 2011). Although the pre-processor provides a
diversity of emission databases, we chose to include only inventory fields commonly indicated with the GOCART package (Freitas et al. 2011), i.e., emissions of OC, BC, and anthropogenic SO$_2$ (excluding those from ships). All emissions are taken for year 2006 (See Table I), a year characteristic of passive volcanic degassing over the Vanuatu volcanic arc. They are provided on a 1°x1° grid and merge fossil fuel and bio-fuel combustions and transportations from the EDGAR database. Seasonal biomass burning emissions from Duncan et al. (2003a) are not applied. Finally, the original non-erupting (i.e. passive) volcanic SO$_2$ emission inventory originates from the AeroCom program, and volcanic sources are prescribed using PREP-CHEM-SRC (e.g. Stuefer et al., 2012). At 1°x1° horizontal resolution, the representation of the volcanic plume remains crude: the mass flux is assumed instantaneously diluted within the grid cell, but with a vertical injection following a parabolic form. The year 2006 inventory of ground emission is repeated throughout the simulation period.

Natural fluxes for DMS, sea salt and dust depend on the local meteorology. For DMS, we use the original WRF-Chem/GOCART scheme, i.e., biogenic emission of DMS is parameterized using the air-sea transfer function of Liss and Merlivat (1986; with surface wind and SST dependency) in concert with ocean data from Kettle et al. (1999). It is well known, however, that DMS emission is sensitive to both the emission scheme and the DMS climatology, as shown by Boucher et al. (2003) and in Table I (column DMS). A sensitivity study is therefore conducted in Section 7 using the most recent parameterization in the literature and DMS climatology from Lana et al. (2011; Appendix C). Regarding dust, since Australia is a large source of dust for the remote South Pacific (Savoie and Prospero, 1989), their emission is included using the original scheme from Ginoux et al. (2001) implemented in the GOCART dust emission module. As sea salt aerosols and their effect on AOD strongly rely on sea spray parameterization (Fan and Toon, 2011; Jaeglé et al., 2011), we test two source functions (Appendix C). One is the original Gong et al. (2003) scheme already in GOCART sea salt module (Eq. C.1), the other (Eq. C.2) is adapted from Jaeglé et al. (2011). Eq. C.2 was designed in GEOS-Chem to better represent AOD and sea salt surface concentrations in the tropics. It differs from Eq. C.1 by the SST dependence of sea salt emissions.

4.6. Computation of aerosol optical properties
While WRF-Chem includes a radiative transfer module to compute the AOD online (Chapman et al., 2010), we made the choice of computing it offline. This allows us (1) to use the Optical Properties of Aerosol and Clouds (OPAC) database (Hess et al. 1998) with recent revisions for particle-size distributions (PSDs) and aerosol optical properties, and (2) to examine the high sensitivity of computed AOD to PSD assumptions for each aerosol type and to humidity effect on their hygroscopic growth rates. To this end, we use the mass extinction efficiency β (i.e., the aerosol extinction regardless of effects due to simulated aerosol mass concentrations; unit m2.g$^{-1}$; see Eq. B.7 in Appendix B) previously introduced and discussed in Chin et al. (2002). This sensitivity to PSDs is well illustrated in Figure B 1, where the use of lower particle sizes in WRF-Chem GOCART results in larger value for β (Eq. B.7) that enhances the simulated AOD (Eq. B.6). By contrast, larger particle sizes, like those used in Chin et al. (2002), decrease significantly β (compare β plots in Figure B 1). Furthermore, small biases in the top range of RH values would skew the AOD.

To retrieve the aerosol optical properties offline, we use the post-processor FlexAOD (http://pumpkin.aquila.infn.it/flexaod/; see also Appendix B). In the calculation, PSDs for each aerosol type are approximated by a gamma distribution for dust and lognormal distributions for the other aerosols. PSDs for SS are assumed to follow a bimodal lognormal distribution, with accumulation (SSA) and coarse mode (SSC) for the first and second modes respectively (Chin et al., 2002). Since two source functions for the generation of SS are evaluated based on AOD (Sec. 5.2), Appendix B provide details on our choice of geometric parameters for PSD of SSA and SSC (Table B 1). We also specify in Appendix B how the four sea salt size bins computed in GOCART are partitioned between SSA and SSC in the AOD computation.

4.7. WRF-Chem/GOCART experiment protocol

Since our objective is to isolate the role of Ambrym on the regional aerosol composition, we focus on a time period with typical non-eruptive activity in the Vanuatu volcanic arc. One difficulty is that explosive and extreme degassing events determine the natural variability in this archipelago. This is well illustrated in Bani et al. (2009) and in Figure 9 showing monthly means of OMI SO$_2$ burdens (solid black line). One sees a continuous and quiet degassing period due to Ambrym from September 2005 to January 2010. Thus, our study focuses on the period of
October 2005-October 2008, when Ambrym dominates the Vanuatu SO2 emissions. This period starts after the extreme Ambrym degassing event of the 2004/2005 austral summer (Bani et al., 2009) and ends before the increasing occurrence of row anomalies in OMI products. However, we discard the short 8-11 October 2006 period corresponding to a high SO2 spike (Figure 9) related to the eruption of Rabaul in PNG. Transported in the upper troposphere by the subtropical Jet Stream, the SO2 cloud extended over Vanuatu during that period (Carn et al. 2009).

The initial and boundary meteorological conditions are provided by the National Center for Environmental Prediction final analysis (NCEP-FNL) available at 1°x1° spatial resolution every 6 hours. Chemical initial and lateral conditions are specified from 6 hourly data of the Model for OZone And Related chemical Tracers MOZART4, with NCEP data for meteorological forcing (Emmons et al., 2010). The model was initialized at 00 UTC 01-SEP-2005 and integrated up to 01-OCT-2008, using the same time step of 300s for meteorology and chemistry. 6-hourly model outputs are analyzed, including meteorological and chemical variables and tendency terms of budget equations for SU and SO2. The simulation is performed without nudging to large-scale data, implying that the model can freely develop its own internal variability. The first model year is discarded due to spin up, as indicated by fluctuations of the simulated SO2 burden time series in the first year (Figure 9, lines 3 or 4).

As detailed in Table V, a set of six model experiments is conducted to address the sensitivity of sulfur burden to sources (and sinks) of sulfate precursors. Two model experiments (CTRL and RUN1) are designed to address the impact of passive volcanic degassing due to Ambrym on tropospheric composition: in CTRL, we allow passive degassing from all volcanoes using the up-to-date AeroCom volcano database for non-eruptive degassing. Since the AeroCom inventory underestimates the release of SO2 by Vanuatu volcanoes (~2.15 kT.d\(^{-1}\)), we adopt the degassing rate of 5.4 kT.d\(^{-1}\) indicated by Bani et al. (2012) for Ambrym. In RUN1 we investigate the role of volcanic emission due to Ambrym by suppressing this volcanic source. Four others experiments are designed to address the model sensitivity to the parameterization of aerosol processes, including the adjustment of the source function for sea salt (RUN2), the influence of DMS source (RUN3) and loss processes related to wet deposition and aerosol re-suspension (RUN4 and RUN5).

It is worth noting that the volcanoes located in northern MVA and eastern Indonesia are also
included in our six experiments, using SO$_2$ volcanic fluxes given in the AeroCom inventory. They are for example volcanoes in PNG and Solomon islands in the northern MVA, which are known to experience strong passive degassing, but our study is not dedicated to their accurate model representation. However, the last top-down non-eruptive budget for PNG (McCormick et al. 2012) is roughly similar to past estimates from McGonigle et al. (2004), which are incorporated in the AeroCom inventory.

5. **MODEL VERIFICATION AND ADJUSTMENTS**

Parameterizations related to the hydrological cycle may cause large variability in cloud macrophysical properties (i.e. cloud liquid water content, fractional cloudiness and rain rate), having deep impact on chemical processes and tracer lifetime (Mattijsen et al. 1997). Another common source of uncertainty is the modeling of sea salt aerosols, having large impact on the aerosol burden (Jaeglé et al., 2011). Model verification and adjustments are detailed in this section.

5.1. **Simulated rainfall and cloud properties**

The Inter-Tropical Convergence Zone (ITCZ) and SPCZ are major features of the tropical western Pacific dictating the local climate of tropical islands (Lefèvre et al., 2010). Uncertainties in their representation may alter the source (e.g., in cloud oxidation) or sink (e.g., wet deposition) of tracers, impairing their fate along the MVA.

The typical ITCZ-SPCZ asymmetry commonly observed in satellite precipitation fields (Schumacher and Houze, 2003; Vincent et al., 2009), a key feature not easily simulated by GCMs that tend to develop the “double-ITCZ” pathology (Song and Zhang, 2009), is well reproduced in the mean state of the simulated rainfall patterns (Figure 1). The model captures the permanent convective belt associated with the ITCZ, separated from the SPCZ by a region of dry air over the Pacific equatorial cold tongue. The SPCZ exhibits the typical northwest-southeast tilt, aligned with the MVA. Overall the model simulates reasonably well the mean tropical SW Pacific climate, as seen in comparisons of model annual fractional cloudiness (FC), outgoing longwave radiation (OLR), and sea level pressure fields against observations in the MVA region (Figure 2). However, the model overestimates the cloudiness associated with permanent
convection within the ITCZ North of PNG, as indicated by lower than observed OLR (Figure 2.d) and higher than observed FC (Figure 2.b). In the SPCZ, simulated FC is slightly lower than observed and the region of high cloudiness indicated with OLR below 240 W.m$^{-2}$ is smaller than observed (compare Figure 2.d and c), meaning that the model introduces dryer air conditions over the southern MVA. This is also true in regions of large-scale subsidence in general. Furthermore, in relation with weak cloudiness conditions in the SPCZ, the area of heavy rainfall larger than 6 mm.d$^{-1}$ expands toward the tropics in the model (Figure 2.b), implying that the model does not exactly capture the observed balance between cloud and rain formation in the SPCZ and places like Vanuatu.

The existence of seasonal biases in the Vanuatu region in precipitation, total atmospheric water vapor and cloud liquid water (CLW) is documented in Figure 3, using zonal averages from 160°E to 174°E. The model estimates the total vapor reasonably well (Figure 3.a,b), both spatially and seasonally, with simulated total vapor of about 10% higher than observed, slightly above the AMSRE RMS error of about 6% (Fetzer et al., 2005). This reflects a slight intensification of the simulated hydrological cycle, due to stronger evaporation and precipitation in the model (Trenberth 1998). In agreement with the moderate cloudiness bias (Figure 2), the model generates weaker than observed CLW in the SPCZ in summer and winter (Figure 3.a and b), but this quantity remains high, i.e., above 100 g.m$^{-2}$ (150 g.m$^{-2}$ in AMSRE) and 80 g.m$^{-2}$ respectively. Toward the subtropics, south of 17°S where thin non-raining clouds prevail (Schumacher and Houze, 2003), the model results agree better with observations. In austral summer, higher surface precipitation relative to AMSRE are also found in the SPCZ region between 5°S and 25°S including Vanuatu with up to 55% more than observed, while winter precipitation agrees better with observations. In the ITCZ, the strongest rainfall bias occurs during boreal summer, with predicted rainfall as large as twice that observed.

Partitioning the simulated precipitation into grid-scale and sub-grid scale (Figure 3.c and d) reveals that the fraction of rain resolved by the microphysics scheme (referred to as “grid-scale”) increases sharply up to 40 % in the warm season, both in ITCZ and SPCZ. The increase of grid-scale precipitation in summer is due to higher occurrence of mesoscale convective systems (Jourdain et al., 2011). The seasonal precipitation bias, as evidenced in Figure 3.c and d, may have multiple origins. To our knowledge, such bias in summer may be related to (1) too strong moisture supply coming from low-level convergence, (2) too strong conversion to rain in the deep cumulus scheme (hereafter CU), and (3) too much conversion due to the grid-scale bulk
Overall, since simulated precipitation is biased high in summer, wet deposition of tracers in the southern SPCZ should be overestimated in summer as well. But, since wet deposition is diagnosed using the grid-scale scheme only (Sect. 4.3), which has lesser contribution to total precipitation, this loss process may finally be underestimated in the model. The issue of uncertainties in wet deposition will be investigated further in Sect. 7.3. It is worth noting that the slight underestimation in simulated FC and CLW may also slightly reduce the oxidation efficiency of dissolved SO$_2$ to sulfate aerosols in cloud droplets, as documented in Mattijsen et al. (1997).

5.2. Simulated winds

Wind speed 10m above the sea surface (U_{10}) is a key parameter used in parameterization for SS and DMS emission. The DMS transfer velocity at the sea-air interface is roughly proportional to U_{10} while SS emissions are proportional to $U_{10}^{3.41}$, meaning that small error in wind speed can impact the production of marine aerosols. Distributions of the observed and simulated surface wind speed in the Vanuatu archipelago are compared in Figure 4. Overall, the simulated wind speed is in reasonable agreement with observation, but the model tends to underpredict moderate wind speed in the range 8-12 m.s$^{-1}$ and overpredict low wind speed. Thus, this small bias in the simulated wind speed distribution may reduce the source strengths of natural aerosols. However, common uncertainties in both emission parameterizations and particle size distributions can lead to higher discrepancies in the simulated aerosol budgets and aerosol optical properties (Textor et al., 2006), as we investigate now.

5.3. Sensitivity of sea salt properties to generation scheme and size distributions

In the remote marine boundary layer, SS aerosols are significant players and have a large contribution to total AOD in visible wavelengths (Shinozuka et al., 2004). They provide also additional surface for heterogeneous reactions and greatly impacts the chemistry in the troposphere (Athanasopoulou et al., 2008). Yet, they remain one of the most poorly constrained aerosols in GCMs (Textor et al., 2007). Despite a large body of literature, it is not clear whether their contribution to AOD relies on their mass burden (which depends on the generation scheme
and model physics; see Jaéglé et al., 2011 and Textor et al., 2007, respectively) or their microphysical properties entering the radiative transfer calculations (e.g., their size distribution; Li et al., 2008). To better constrain the SS burden and their optical properties in GCMs, various parameterizations were developed and tuned (Fan and Toon, 2011; Jaeglé et al., 2011). Alternatively (and more radically), scaling factors were applied to simulated SS concentrations in order to fit the observations (Saide et al., 2012).

Here, we explore the sensitivity of SS simulation to their source parameterization using CTRL and RUN2. In CTRL, the standard Gong (2003) sea spray formulation (Eq.C.1) is used in the GOCART SS emission module, whereas in RUN2 the source function with SST dependence (Eq.C.2) from Jaeglé et al. (2011) is used instead. It is worth noting that the same SST (the NOAA Optimum Interpolation V2 SST) is applied in Jaeglé et al. (2011) and our model setup. For the calculation of their optical extinction with FlexAOD (Sect. 4.6 and Appendix B), the SS size distributions for accumulation (SSA) and coarse modes (SSC) are similar in the two experiments: GOCART SS mass size bins [0.1-0.5µm] and [0.5-1.5µm] are assumed to follow SSA and SSC size distributions respectively, while the two others GOCART mass size bins, i.e., [1.5-5µm] and [5-10µm] are treated like giant and ultra-giant SS respectively, following Jaeglé et al. (2011). The effective radius \(r_{eff} \) (Table B 1, gray shaded rows) is reduced to 0.25µm for SSA and 1.1µm for SSC. This revision for SSA and SSC size parameters is supported by recent observations (Jaeglé et al., 2011) and their values contrast with those used in Chin et al. (2002) or in OPAC (Table B 1).

Figure 5 displays the mass concentration of SSC as a function of surface wind speed for the two SS generation schemes tested. SSC observations from PMEL cruises and a semi-empirical SSC function, both referenced in Jaeglé et al. (2011), are superimposed. Observed and predicted SSC concentrations agree reasonably well in the range 1-5 m.s\(^{-1}\), but both formulations overestimate the SSC mass concentration at wind speeds greater than 6 m.s\(^{-1}\). Note that the Jaéglé source function shows the largest bias, leading us to conduct further verifications.

The aerosol collection of the University of Miami Aerosol Group (Savoie and Prospero 1989, hereafter referred to as the Miami Collection) is dedicated to assess the aerosol composition and role of sources in the remote tropical Pacific atmosphere, and includes SS observations.
Whatman-41 filters with mass collection efficiency greater than 95% for SS (Savoie et al., 1989) have been used for their collection. Mean surface concentrations at six sites across the South Pacific are reported in Table VII, column 8, gray shaded rows. Note that only half of the sites included in the SS comparison (American Samoa, New-Caledonia, and Norfolk Island) are not contaminated by local surf conditions (Dr. Prospero’s personal communication). The results show that predictions of surface SS concentrations using the Gong scheme have the best skill, with mean values very close to measurements. In contrast, surface SS concentrations are overestimated by about 80% in the tropical band using the Jaeglé source function (Table VII, column 9), which is surprising since this scheme was designed for improvement in that band (Jaeglé et al., 2011). The difference, however, is less than 5% in the subtropics where the Jaeglé et al. scheme mimics the Gong scheme.

To further test the two SS generation schemes and evaluate our assumptions in SSA and SSC particles size distributions, the SS AOD is now computed offline with the FlexAOD postprocessor and the results compared to empirical functions (O'Dowd et al., 2010; Fan and Toon, 2011). The SS AOD includes the contribution of both SSA and SSC, while giant and ultra giant SS are not included since they are less optically active (Appendix B). In Figure 6, two power-law empirical functions of SS AOD versus wind speed from Mulcahy et al. (2008) are used for comparison. The results in Figure 6 show that SS AOD predictions obtained using the Gong source function are well bounded by the two empirical power-laws, but not when using that of Jaeglé et al. (2011). Overall, the model results are in reasonable agreement with observations with (1) our choice of SS source function based on the Gong scheme; and (2) our settings for particle size distributions applied to both SSA and SSC.

6. AEROSOL DISTRIBUTION AND COMPOSITION: ROLE OF THE PASSIVE VOLCANIC DEGASSING

Using WRF-Chem and satellite observations, we now investigate the impact of Ambrym volcano on the regional aerosol composition. First, the sulfate precursor volcanic source is assessed, by comparing the SO$_2$ burden in CTRL results with OMI trace gas products. Second, a cross-examination of simulated and observed aerosol optical properties is performed to retrieve the regional air composition and isolate the influence of Ambrym.
6.1. Assessment of sulfate precursors emitted from Ambrym

Gas spreading associated with volcanic degassing

Figure 7 displays the mean column-integrated \(\text{SO}_2 \) VCD from CTRL outputs and OMI observations (inset) for the period 01-oct-2006 to 01-oct-2008; Figure 8 displays their meridional average along a band centered on Ambrym (depicted by a gray shading on Figure 7). In the vicinity of the Vanuatu archipelago, the spatial distribution and range of \(\text{SO}_2 \) VCD values are similar in the model and observations. Since we have imposed Ambrym as the sole \(\text{SO}_2 \) volcanic source for the Vanuatu arc (Sect. 4.7), the good agreement between model and data confirms the key role played by this volcano on the local \(\text{SO}_2 \) budget.

The observed gas spreading is rather isotropic around Ambrym (inset), a feature also represented in the model, even though the model under-predicts the observed eastward spreading (Figure 8). That eastward \(\text{SO}_2 \) spreading seen in OMI is likely linked to the eastward advection of gases by westerlies above the trade-wind inversion, indicating that, the model may underestimate gas exchanges from the lower to the free troposphere. In addition, the model misses mesoscale patterns due to its relatively coarse resolution of island-scale dynamics including diurnal heating effects (Lefèvre et al. 2010). Nevertheless, the model captures the right range of \(\text{SO}_2 \) VCD spatial variability, as depicted by the error bars in Figure 8.

Accuracy of volcanic \(\text{SO}_2 \) burden observation

OMI \(\text{SO}_2 \) observations have proven useful to evaluate the volcanic budget (Bani et al., 2012, McCormick et al. 2012). They have also provided top-down constraints on global \(\text{SO}_2 \) emissions through inverse modeling (Lee et al. 2011). But the accuracy of \(\text{SO}_2 \) burden inferred from space using near daily, cloud contaminated, noisy and subsampled satellite data is questionable and may impair the actual \(\text{SO}_2 \) budget evaluation, as pointed out in the aforementioned studies.

To assess the error made in top-down methods, we sample the simulated \(\text{SO}_2 \) VCD from CTRL (Table V) as if they were observations. Eq. 1 is applied to the model outputs to evaluate the impact of satellite sampling and integration area on the retrieval of the \(\text{SO}_2 \) mass burden due to Ambrym. To help in the comparison, we use the \(\text{SO}_2 \) VCD anomaly between CTRL and RUN1
(Table V) to isolate the simulated SO$_2$ mass burden due exclusively to Ambrym. The results are displayed in Table VI and also in Figure 9.

First, the effect of satellite sampling on the retrieval of SO$_2$ mass burden is evaluated using the 10° latitude by 14° longitude box depicted in Figure 7 (a box similar to the domain of integration applied in Bani et al. 2012). With the model sampled using OMI swaths (Figure 9, curve 2), the simulated top-down SO$_2$ mass burden agree remarkably well with OMI estimation displayed in curve 1 (2.43 and 2.24 kT(SO$_2$) respectively; relative difference: 7.5%) and their variances are similar. This very good agreement contrasts with the box-averaged value computed from the full model solution (Figure 9, curve 3). The full SO$_2$ burden is 53% higher than that estimated from satellite sampling (compare rows 2 and 3, Table VI) and has much lower variance (std: 0.03 instead of 0.44). These results show that satellite swath sampling causes a clear underestimation of SO$_2$ VCD but large spurious signal variability. Note that the lack of correlation between curves 1 and 2 in Figure 9 may be explained by the model’s internal variability, which is stochastic in nature and reduces predictability (in the absence of data assimilation or nudging technique). Second, the box approach applied in OMI swaths to evaluate the volcanogenic budget (Bani et al., 2012; McCormick et al., 2012) causes additional reduction in budget estimate. This is apparent in the comparison between curves 2 and 4. The latter is the simulated SO$_2$ mass burden due to Ambrym without sampling or geographical constraint. We see that with the top-down method the SO$_2$ volcanogenic budget is reduced by about half (compare also rows 2 and 4 in Table VI).

In summary, using the up-to-date SO$_2$ emission rate given by Bani et al. (2012), we find very good agreement between observed and simulated SO$_2$ mass burden when using the same sampling strategy. However, sampling biases appear to lower SO$_2$ burden by 50%, which is within the range [30%-70%] evaluated from field studies (e.g., Bani et al., 2012; McCormick et al., 2012). In addition Eq. 2 gives a simulated SO$_2$ lifetime of 20 hours (Table VI), similar to values found in the tropical band by Lee et al. (2011). It is also in agreement with the value of 18h in PNG evaluated using successive OMI overpasses by McCormick et al. (2012). These results provide additional confidence in our modeling approach for investigating the influence of Ambrym on air composition.

26
6.2. Total AOD and Ambrym contribution

Figure 10 displays 3-year average MODIS/Aqua and simulated AOD (CTRL run) at \(\lambda=550\text{nm}\). Figure 10.d shows the AOD seasonal variability for both model and satellite estimates. Simulated AOD from the global GSFC/GOCART G4P0 science product distributed by the Giovanni Data Portal (http://disc.sci.gsfc.nasa.gov/gesNews/gocart_data_V006) is also shown for comparison (Figure 10.c). The GSFC/GOCART products are widely used in combination with satellite observations to assess the global aerosol composition (Colarco et al., 2010; Yu et al. 2010; Jones and Christopher, 2011) or to infer the aerosol impact on cloud properties (Koren et al. 2010).

Unlike with the GSFC/GOCART product, we find a quite close agreement between satellite and simulated AOD using WRF-Chem/GOCART over the SW Pacific (compare Figure 10.a and b). The only notable difference with MODIS AOD is some underestimation in southwestern PNG, the Indonesian Maritime Continent and northern Australia, where the satellite instrument captures the effect of large biomass burning events (Duncan et al., 2003ab). Further investigations using satellite observations, for which details are beyond the scope of this study, show that the absence of Indonesian wildfire biomass burnt emissions (Table I) explains this discrepancy. This error is also present in the GSFC/GOCART AOD (Figure 10.c).

In the remote marine boundary layer, east of PNG, the 3-year average maps show similar patterns (Figure 10.a and b). A clear feature is the strong AOD signal in the Ambrym volcanic degassing plume, due to the formation of SU aerosols. As for seasonal variability, observed and simulated AOD also exhibit strong similarities in the Vanuatu zonal band (Figure 10.d, the two upper seasonal diagrams). The wet and warm season (Jan-Apr) is characterized by low sea spray formation as trade winds relax during the seasonal strengthening of the SPCZ in the region. This strengthening also increases the wet removal of aerosols as convective rain forms over the SPCZ region, including Vanuatu. This leads to a sharp aerosol burden reduction both in model results and observations during that time period. Conversely, in austral winter, strong trade winds and drier conditions occur as the SPCZ moves northward resulting in larger AOD signal both in model values and satellite observations.
Contrasting with our results, there are large discrepancies between GSFC/GOCART AOD and observations, both in terms of AOD magnitude (Figure 10.c) and seasonal variability (Figure 10.d, lower panel). The origin of biases in the GSFC/GOCART AOD will be discussed later (Sect. 8). Subtle differences also exist (Figure 10.d) like a moderate overestimation of the aerosol burden in the southern side of the SPCZ (between 10°S and 20°S), and underestimation in the convective region between 0° and 10°S. These differences may be related to the absence of the subgrid-scale contribution to the total simulated aerosol wet removal or other misrepresentation of simulated precipitation anticipated in Sect. 5.1. In the 0°-10°S band, one could also argue that the weak simulated aerosol burden is due to low emission of volcanic SU precursors in PNG, since erupting volcanoes contribute to the SU cycle in this region, as indicated earlier in Sect. 3.7.

With model results, the impact of volcanoes to the aerosol burden can be determined. Figure 10.b shows the contribution of Ambrym degassing to total AOD (reported with contour lines). Volcanic SU aerosols from Ambrym are contributing 15% of total AOD (i.e. ~0.025 AOD, close to the MODIS AOD detection limit) as far as 1500 km from the source. Again, these results give us great confidence in the present climate and aerosol model and allow us to explore the distribution of aerosol types that contribute to total AOD.

6.3. Aerosol type detection and contribution to total AOD

To estimate the contribution of aerosol types to the AOD, we rely on the model and the CALIOP aerosol subtyping scheme. Figure 11.a and Figure 11.b compare the structure of the aerosol composition explaining the total AOD using model results and CALIOP retrievals respectively. Because CALIOP observations are often contaminated by clouds in the SPCZ and have a low temporal resolution (Table II), we use the whole 5 years of CALIOP data time series against the 3-year model results. The agreement is excellent between MODIS and simulated AOD (Figure 11.a) as already shown. The main difference between the CALIOP, MODIS and simulated AOD (Figure 11.b) is the weaker AOD signal associated with Ambrym degassing in CALIOP, which is evident at 15°S. This problem may be related to deficiencies in CALIOP CAD algorithm (see Appendix A), which could miss the identification of fresh SU aerosol layer and/or misclassify it as clean marine subtype (primarily composed of SS, mixed with water soluble components like
Such misclassification of components composing the mixture has additional consequences on the aerosol optical extinction profile of the layer, and may explain the discrepancy between CALIOP AOD and other co-located satellite observations, as reported by Kittaka et al. (2011) and Oo and Holz (2011). Algorithm deficiencies definitely limit the usefulness of CALIOP CAD for accurately retrieving aerosol composition in the context of strong passive volcanic degassing.

Despite the difference in aerosol mixture definition between the model and CALIOP (Sect. 4.1), and excluding the volcanic degassing band between 10°S and 20°S, useful information can be retrieved on aerosol composition by examining Figure 11.a and b. Here, we assume that SS and SU compose the clean marine aerosol mixture defined in CALIOP, and DU and CC (OC+BC) the other CALIOP mixtures (i.e. polluted dust, desert dust and smoke). In the equatorial belt, the clean marine contribution to AOD is dominant in CALIOP (about 94%; 89% in the model). Toward the subtropics off 20°S, the marine aerosol contribution decreases slightly from 91 to 85% (85 to 79% in model). As SS dominates the AOD signal (Figure 11.a), especially SSC representing nearly half the simulated AOD, it confirms that accurate representation of SS is essential in aerosol and troposphere chemistry modeling.

Polluted dust and continental aerosols constitute the second dominant mixture with larger contribution toward the subtropical belt off 20°S. Their mean altitude as indicated by CALIOP is 2 km (not shown), implying that the polluted continental material is mainly transported in the lower troposphere together with clean desert dust also retrieved in CALIOP (Figure 11.b). Aloft, smoke from biomass burning is transported in the middle troposphere (CALIOP mean layer altitude 5 km), with possible origin from South Africa (Singh et al., 2000) and Indonesia (Duncan et al., 2003b) wildfires. From their respective contribution to CALIOP AOD, these two mixtures (clean desert and smoke) appear to be minor contributors to the aerosol composition.

The model accurately retrieves the larger contribution of DU, a proxy for polluted continental mixture and desert dust, in the subtropical belt (Figure 11.a). Surface DU concentrations from the Miami Collection (Savoie and Prospero, 1989), displayed in Table VII (column 7) are about four times higher in the subtropical belt than in the tropics, confirming the satellite and model patterns. But the Miami Collection is not exempt of errors. For example at Yaté, located on New-Caledonia’s eastern coast, observed DU concentrations are surprisingly lower than in pristine and
remote tropical stations. This is because aerosol collection was operated during offshore wind conditions only (Savoie et Prospero, 1989) and because the surrounding mountainous barrier isolates the station. These conditions are not suitable for the sampling of the Australia outflow, probably resulting in too small values of DU measurements.

On average, the structure of the aerosol composition given by CALIOP (Figure 11.b) does not exhibit a dust signal in the Vanuatu region, suggesting that passive degassing plumes are ash-free. But, limitations in the CALIOP CAD signaled earlier may provide no definitive conclusion. However, during strong eruptive events, both CALIOP and MODIS AOD report an ash contribution to the AOD, with the detection of polluted and continental dust (see Appendix A). From pilot reports transmitted to the Wellington Volcanic Ash Advisory Centre, ash observations are more frequent during eruptions, but infrequent at other times. But, at close distance to some volcanoes (Mount Yasur on Tanna Island, summit 405m), low level ash emissions are often detected by visitors (Dr. Bani’s personal communication). In that respect, the presence of ash co-emitted with gas remains uncertain and needs further investigations.

7. THE SULFUR BUDGET OF THE TROPICAL SOUTHWEST PACIFIC

As stated in the previous section, volcanoes in MVA and especially Ambrym are key sources determining the aerosol composition of the remote marine boundary layer of the SW Pacific. Since the model gives a reliable representation of the regional climate and aerosol composition, we now use it to assess the influence of regional source, transport and sink processes on the distribution of sulfate aerosols.

7.1. Oceanic and volcanic sources in the sulfur cycle

The Miami Collection (Savoie and Prospero, 1989) includes non-sea salt sulfate (equivalent to model SU) and methanesulfonate (MSA) observations. Their mean surface concentrations at six sites across the SW Pacific are reported in Table VII, in gray shaded rows. The aerosol collection is extensively used in the community to address, among other topics, the role of DMS in the atmospheric sulfur cycle. If the contribution of volcanic sources to SU observations in the Miami Collection is still debated (Dr. Prospero’s personal communication), model and field studies
suggest that oceanic DMS remains the largest source of SU precursors in regions with pristine tropical air, like Samoa (Savoie and Prospero 1989, Savoie et al., 1994). Here differences in SU surface concentrations between CTRL and RUN1 are used to investigate the impact of Ambrym on the SU distribution across the monitored stations in the Miami Collection.

As shown by Boucher et al. (2003) and Lana et al. (2011), using different air-sea transfer schemes and oceanic DMS climatology has a large incidence on the simulated sulfur cycle. We address that sensitivity by adding in the GOCART DMS module (Appendix C) a second DMS flux parameterization adapted from Nightingale et al. (2000), using the most recent oceanic DMS climatology described in Lana et al. (2011). Changes in MSA and SU surface concentrations between RUN3 and CTRL help us to evaluate the role of DMS flux parameterization on the Sulfur cycle. In addition to mean changes (Table VII), the seasonal evolution of SU and MSA is examined for three sites located close to the MVA, i.e., New-Caledonia, Norfolk Island and American Samoa (Figure 12).

First, the new DMS flux parameterization doubles the MSA surface concentrations everywhere (compare RUN3 and CTRL, Table VII column 3). Compared with CTRL results obtained using the original Liss and Merlivat’s (1986) scheme with Kettle et al’s (1999) database for oceanic DMS, RUN3 seems in better agreement with observations. Due to the increase of DMS, SU surface concentrations are slightly higher in RUN3, i.e., a 30% increase in the tropical belt and about 20% in the subtropics (column 6). CTRL and RUN3 both capture the seasonal cycle (Figure 12), but RUN3 tends to overestimate summer MSA. By contrast in winter, both CTRL and RUN3 have lower MSA than observed, especially around Samoa suggesting a problem with the DMS source in that region. Running the alternative DMS flux parameterization from Nightingale et al (2000) using the original Kettle et al’s (1999) database accounts for only half the increase of DMS (not shown). Overall, the benefit for SU surface concentrations of using new DMS parameterizations is not clear (Table VII) and a large negative bias remains in RUN3 of 55% in Samoa and 39% in New Caledonia.

Turning off Ambrym degassing (RUN1) promotes a large reduction of 56% in SU surface concentrations in New Caledonia, but also a slight reduction in remote places, implying that volcanic species can influence the chemistry of the remote boundary layer in the SW Pacific
(contribution of volcanic SU: 7.7% in Rarotonga, 5.5% in Samoa, and 8.5% in Norfolk; see Table VII, column 5). Furthermore, in New Caledonia, the inclusion of Ambrym degassing in CTRL and RUN3 tend to slightly decouple SU from the MSA seasonal cycle (Figure 12, around April and October). This is also observed in the Miami Collection for that location, with a large decoupling in September and a slight one in April. As expected, by allowing volcanic passive degassing, intra-monthly variability is in much better agreement with measurements (compare monthly deviations in Figure 12).

7.2. Transport and sinks of volcanic sulfate

As evidenced by the OMI SO$_2$ burden (Figure 7, inset), New Caledonia’s boundary layer is directly exposed to volcanic gases originating from Ambrym, which can promote the formation of volcanogenic SU aerosols directly over New Caledonia. But more complex processes are involved with volcanic species found in more remote places. There are detailed below.

Figure 13.a and Figure 13.b display respectively the mean SU concentration at the surface and its surface deposition rate including dry and wet deposition. Using the SU difference between CTRL and RUN1 (hereafter Ambrym SU), we can spatially evaluate the mean contribution due to Ambrym degassing (depicted by percent contours in Fig. 15a). Regions of large surface amounts of SU are generally located close to sources of volcanic and anthropogenic origins. The fraction associated with Ambrym exhibits a typical pattern matching the SPCZ axis tilt (hatched box in Figure 13.b). The mean wind pattern and sulfate mixing-ratio at the trade wind inversion altitude (750hPa) are also reported in Figure 13.d. The wind pattern reflects the low level convergence of moist tropical air along the SPCZ, and as evidenced by patterns of Ambrym SU in Figure 13.a, b and d, horizontal transports between the lower and free troposphere dictate the east-west elongated distribution of Ambrym volcanic species across the SW Pacific.

Furthermore, as evidenced in Figure 13.c, obtained using cross-averaged sink/source quantities of Ambrym SU along the SPCZ axis, wet deposition and oxidation in aqueous phase are definitely major processes determining (respectively) volcanic SU sinks and sources in the SPCZ. However, east of the date line, the in-air oxidation of SO$_2$ emitted from Ambrym remains one of the most important chemical pathway for the generation of Ambrym SU, indicating that
SU production does not originate from the lower troposphere (where its moist and cloudy air provides the most efficient pathway for oxidation; see Sect. 4.4) but from the free troposphere with drier conditions. Therefore, the simulated Ambrym SU found in the remote boundary layer of tropical islands, like Rarotonga and Samoa, results from long-range transport of SO$_2$ above the trade inversion.

In contrast, downwind from the source toward the Maritime continent, the in-cloud oxidation of SO$_2$ dominates the formation of Ambrym SU in this region characterized by moist tropical air, while the in-air oxidation is four times less efficient. At the westernmost longitude of PNG (130°E), the Ambrym SO$_2$ is fully oxidized, but Figure 13.d indicates that part of Ambrym SU is advected farther into the Maritime continent by the large scale circulation on the northern side of the Australian anticyclone. This implies that the sulfate aerosol originating from passive volcanic degassing in the MVA is exported outside the South Pacific and may contribute (with Indonesian wildfires) to the SU budget over Southeast Asia. Yet, studies of this region have not considered the possibility of remote volcanic influence (e.g., Trivitayanurak et al., 2012). On the other hand, the Ambrym SU patterns in Figure 13.b also suggest that the sharp topography and wet climate of PNG mainland act to form an efficient barrier against the equatorward spreading of volcanic species originating from Vanuatu.

7.3. Closed sulfate budget

After describing how passive volcanic degassing sources, tropical dynamics and cloud processes mediate the distribution of Ambrym SU, we now turn to the driving tendencies of Ambrym SU in the vertical column. The sulfate evolution equation (the same applies for SO$_2$) can be expressed as:

\[
\frac{\partial \text{su}}{\partial t} = \text{CHEM} + \text{ADV} + \text{DIFF} + \text{VMIX} + \text{CONV} + \text{WET},
\]

where CHEM is the source-sink term due to chemical reactions implemented in GOCART; ADV the lateral and vertical advections; VMIX the vertical turbulent diffusion and dry deposition, CONV the sub-grid scale convective transport of tracers; DIFF the lateral diffusion; and WET the sink/source term due to rain scavenging (rainout + washout) and re-suspension after evaporation (Sect. 4.7). DIFF is relatively small and is neglected in the budget analysis. When averaged over the 2006-2008 period, the budget equation provides the climatological balance
expressed as:

$$0 \approx \text{CHEM} + \text{ADV} + \text{DIFF} + \text{VMIX} + \text{CONV} + \text{WET}, \quad (5)$$

This budget is analyzed at two contrasted regions situated at near equal distance from the source and denoted by rectangle boxes in Figure 13.d. One is located over the Solomon Sea, a region characterized by deep convection (low OLR, see Figure 2) and large in-cloud oxidation of Ambrym SO$_2$. The second is at the southeastern tip of the SPCZ, east of the date line, where the in-air oxidation drives the Ambrym SU production. Time and box averaged vertical profiles of SO$_2$ and SU concentrations are given in Figure 14, while sources and sinks terms are shown in Figure 15. Figure 15.a confirms that advection is the largest source of SU within the lower troposphere in the SPCZ downwind from the volcano, but it is balanced by vertical mixing in the boundary layer and also convective transport. Just below the base of the free troposphere (750hPa), turbulent vertical mixing is the primary mechanism involved in the venting of SU, while in mid-troposphere deep convection accounts for the replenishment of SU, eroded by advection and by wet scavenging. As shown in Figure 14, a small part of volcanic species (here SU) can reaches the tropopause. It follows that the passive degassing may influence the stratosphere composition. Over the Solomon Sea, at 1000 km from the source, chemical reactions still play a moderate role in the SU budget, specifically in the cloud layer at 900 hPa. Throughout the vertical column, aerosol wet removal processes by liquid and frozen hydrometeors (Appendix C) play a strong control in the depletion of SU.

In the southeastern box (Figure 15.b), SU advection (i.e., the lateral component; not shown) is dominant above the boundary layer up to mid-troposphere (this also applies to SO$_2$; not shown) and is balanced by wet deposition processes. Chemical production of SU (in the gas-phase) occurs in the upper troposphere (200 hPa) at the same rate than in the lower troposphere. This highlights a source of Ambrym SU precursors near the tropopause, fueled by the deep convection over warm waters and transported poleward in the upper troposphere by the Hadley Cell circulation. Indeed, SO$_2$ concentrations in the upper troposphere are twice those found in the convective box (compare the red and black curves for SO$_2$ in Figure 14) and a similar budget analysis conducted on SO$_2$ highlights the upper source of SU precursors by lateral advection (not shown). Interestingly, and in contrast to the Solomon Sea region, wet deposition is the main mechanism explaining the replenishment of SU in the southeastern boundary layer. This is due to
re-suspension of SU following the evaporation of thin rain droplets.

7.4. Aerosol microphysics

As pointed out by the budget equation (and also suggested in previous sections), the fate of chemical tracers critically relies on the distribution of modeled rainfall and on the treatment of wet deposition. As for subgrid-scale convective transport (Hoyle et al. 2011), it is unclear that wet deposition (at grid- and sub-grid scales) is adequately represented in global and regional climate models (Textor et al. 2006; Croft et al. 2012). Usually in global models, the wet scavenging efficiency of tracers (ranging from 0 to 100%) is tuned to adjust the tracer lifetime (e.g., Balkanski et al. 1993; Fan and Toon 2011). In addition, the re-suspension of soluble tracers due to evaporation of rain droplets is not included in WRF-Chem public releases (for resolved precipitation). This absence of reversibility in aerosol wet removal was recently invoked by Saide et al. (2012) to explain a model aerosol underestimation in the southeastern Pacific stratocumulus cloud deck.

Our implementation in WRF-Chem of a new wet removal treatment inherited from the work of Giorgi and Chameides (1986) and Balkanski et al. (1993), gives us the opportunity to address tracer sensitivity to wet deposition, including the debatable question of aerosol re-suspension. It should be emphasized that the wet deposition scheme only considers the washout, rainout and re-suspension of aerosols associated with grid-scale precipitation and uses a scavenging efficiency of 100% for soluble gases and aerosols (Appendix C).

The sensitivity of simulated total AOD to aerosol wet processes is investigated through two additional experiments. RUN4 and RUN5 are similar to CTRL but without wet deposition and without aerosol re-suspension respectively. The results are displayed in Figure 16. MODIS AOD and simulated AOD for the other experiments are also shown for comparison. Table VIII summarizes SO2 and SU budgets for each experiment. Figure 16 reveals that the wet deposition treatment strongly controls the aerosol burden (compare AOD between RUN4 and CTRL) and exerts a larger impact than any improvement for sources like DMS for SU precursors (RUN3) or SS (RUN2). Furthermore, as indicated by the AOD difference between RUN5 and CTRL, the re-suspension of aerosols plays also a key role in the SU distribution both in the tropics and subtropics belts. However, the importance of re-suspension effect to AOD appears slightly larger.
toward the subtropics south of 10°S, as pointed out earlier using the budget equation. In terms of sulfur cycle, this source of SU released from evaporating droplets is equivalent to about twice the contribution due to Ambrym volcanic degassing (see in Table VIII the SU burden differences between RUN5/RUN1 and CTRL).

8. DISCUSSION

8.1. On the distribution of volcanic species

The combination of satellite observations and WRF-Chem/GOCART solutions clarifies the role of passive volcanic degassing and SPCZ dynamics on the aerosol composition of the SW Pacific. Our results complete the works of Jones and Christopher (2011) on the origin of volcanic sulfur species in the region, but outline in great detail the fate of these species. Our assessment of the MVA passive degassing contribution to aerosol composition is based on a 2006-2008 study of Ambrym, characterized by a mean SO₂ emission rate of 5.4 kT.d⁻¹. This source represents 30% of the regional SO₂ emission from volcanoes composing the MVA and eastern Indonesia and is equivalent to half of the regional anthropogenic emission, including that of Australia. Using simulated and MODIS AOD as a proxy for aerosol burden, it appears that the Ambrym SO₂ rich plume allows the formation of large amounts of acidic SU aerosols, giving rise to an elongated layer of scattering particles downwind of the volcano to Papua New Guinea (1500 km away) and farther into the Maritime Continent. Since the model provides a reasonable representation of the regional climate and aerosol distribution, we are able to expose the very strong link between distribution of volcanic species and SPCZ dynamics, in terms of chemical and transport pathways.

In the lower troposphere, vertical mixing by turbulence and deep convection governs the vertical motion of volcanic volatiles above the trade inversion. Aloft, the subtropical anticyclones located over Australia and the South Pacific dictates their long-range transport. The flow on the northern side of the Australian anticyclone transports SU and SO₂ through the moist tropical air with large cloudiness. There, the conditions are very efficient to totally deplete SO₂ through oxidation in the aqueous phase. By contrast and since conditions are drier and more favorable to delay the production of SU in the subtropical region, the southeastern branch of the South Pacific
anticyclone transports larger proportion of SO$_2$ in the volcanic mixture. In addition, the very deep convection in the tropics directly supplies the upper branch of the Hadley Cell with surface volcanic volatiles. Some of the transport of volcanic species toward the southeast Pacific is thus achieved through the poleward motion of tracers in the Hadley Cell.

Finally, the chemical production of aerosols and their wet removal are also strongly linked to the microphysical and macrophysical properties of clouds in the SPCZ, which points out to the importance of adequately reproducing its features in model simulations (rain rate, hydrometeor phase and size, fractional cloudiness, etc.).

8.2. Impacts of passive volcanic degassing

Our model results indicate that Ambrym volcano act as a remote source of volcanogenic species in neighbouring countries, but also in remote places which might initially appear unlikely (East Indonesia, Norfolk Isl., Rarotonga). This is due to the large scale-circulation and dynamics of the SPCZ. The dispersion pattern detailed in this study for Ambrym is likely to be the same for others volcanoes of Vanuatu, but will likely differ for those of PNG located in the deep convective region, as the circulation pattern over PNG and Vanuatu are different (Figure 13.d).

As indicated by Figure 14, significant amounts of sulfur species can be pumped up to the upper troposphere and lower stratosphere by active convections. Once lofted in the stable stratosphere, Ambrym’s SU becomes a long-lived stratospheric aerosol, having the potential to provide more long lasting effect on the Earth radiative budget (Graf et al., 1997). Through this process, the passive volcanic degassing in the MVA may be another source of sulfur species for the stratosphere, which comes in addition to emissions from small and high erupting volcanoes (see Vernier et al., 2013).

Our cross-examination of the AOD in the cloudy SPCZ clearly indicates that the Ambrym’s SO$_2$ source led to a significant and long-lasting perturbation of the tropospheric aerosol extinction, with AOD anomaly in the range [0.03-0.04] (see Figure 11). Careful estimations of the direct (and indirect) aerosol radiative forcing due to Ambrym remain to be done (i.e. Yuan et al. 2011). One climatic feature of the region is its high cloudiness, which immediately raises the question of the
perturbation of cloud properties by aerosols. With SO₂ emission flux twice compared to Kilauea (~5.4 kT.day⁻¹ against ~2 kT.day⁻¹ in quiescent period), Ambrym is expected to drive similar volcanic aerosols forcing on the local climate as investigated in Yuan et al. (2011) and Ebmeier et al. (2014) for the Hawaiian volcano. In fact, this question is addressed in a companion paper (Lefèvre et al., this issue), where they found that not only Ambrym’s degassing modifies the properties of marine boundary clouds, but also impacts the hydrological cycle.

Volcanic degassing also affects air chemistry as it supplies volcanic oxidants that change the natural oxidation capacity of the background air. As the Ambrym plume includes substantial amounts of reactive Bromine BrO (Bani et al., 2009), its venting and long-range transport in the upper troposphere (suggested by the simulated SO₂ fate) would likely affect the tropical ozone budget (Gerlach, 2004; von Glasow et al., 2004) and oxidation mechanisms of biogenic gases like DMS in the remote and pristine marine boundary layer (Faloona, 2010; Gray et al., 2010). Therefore, poor SPCZ representation and underestimation of volcanic degassing emissions for aerosol precursors and oxidants would limit the capacity of models, even with sophisticated volcanic plume chemistry, to predict the geochemical cycle of key atmospheric species in the SPCZ region.

In Vanuatu, Ambrym inhabitants are directly exposed to chemically active plumes, with health issues such as skin burning due to acid rain and dental fluorosis due to large exposure to deposited fluoride (Allibone et al., 2010; Cronin and Sharp, 2002). During the recent 2012 Pandora research cruise (Eldin et al., 2013), we measured acid rain in the Solomon Sea downwind from Ambrym that was consistent with our forecast (using WRF) of a volcanic plume reaching the region. The simulated plume also explained the occurrence of acid rain events in northern New Caledonia with pH reduced to 3.5 recorded near the Koniambo Nickel SAS industrial complex. Such scientific observations and anecdotal evidence substantiate the potential role of Ambrym degassing on the boundary layer chemistry of New Caledonia and in the remote ocean (see deposition maps Figure 13). Environmental consequences and practical applications are diverse. The inclusion of volcanic aerosols in air quality surveys would help assessing the oxidizing capacity of air. It would also allow us to describe their potential contribution in forestry and agriculture damage or their role in biogeochemistry of surface waters, including their potential contribution to the natural acidification of exposed coral reefs.
In the larger Pacific region, the link between volcanic ashes and ocean fertilization has been established in the context of eruptive activity (Langmann et al., 2010). In the surrounding of the Vanuatu volcanic arc, a similar relation may exist, as evidenced by satellite observations during short erupting events (see Appendix A) and deserves ongoing research. But the mixture of volcanic gases in Ambrym plume may also impact ecology and the food chains, since recent studies have pointed out the key role of reactive halogen in enhancing the oxidation and deposition of volcanogenic Hg species near source (Von Glasow, 2010; Roberts et al. 2014). Across the SW Pacific, elevated MeHg (Methylmercury) concentrations were found in seafood products (Dr Anne Lorrain’s personal communication from the Marine Environmental Sciences Laboratory (LEMAR-IRD)), pending further investigations on the role of the volcanic plume chemistry in the MVA.

8.3. Assessing observational needs and errors

In this study, we carefully identified some model flaws associated with horizontal resolution (e.g., smoothing of island-scale features), precipitation rate (summer overprediction), physics/chemistry coupling or sulfur chemistry (e.g., specified background fields of reactants, fixed pH, no heterogeneous chemistry, external mixing assumption). Nevertheless, the simulations produced by WRF-Chem/GOCART are compelling and promote the discussion on measurement issues.

Our capacity to understand the role of passive degassing is limited by the paucity of long-term observations of gas composition and fluxes. Uncertainties and accessibility issues impairing volcanic inventories have been recently reviewed (Oppenheimer et al., 2011). As a result of limited in-situ observations, top-down methods have become a valuable support to obtain reliable estimates. However, our study and several other investigations (Bani et al., 2012; McCormick et al., 2012) reveal serious issues of spurious variability and underestimation by satellite observation due to irregular sampling, cloud contamination and sensor detection limits. Therefore, long-term ground observations remain needed to adequately constrain top-down budgets.
Beside satellite sampling issues, the cross-evaluation of model and observations allowed us to pinpoint the poor inventory used for biomass-burning emission in southwest Indonesia. It evidenced deficiencies in satellite methods commonly used to retrieve aerosol compositions. A most outstanding example is the misclassification of sulfate aerosols by the CALIOP CAD algorithm. Obviously, the CAD algorithm fails to identify volcanic SU aerosols freshly released in the lower troposphere, probably as a consequence of inaccuracies in the look-up table based on AERONET observations (Appendix A). This result suggests that the characteristics of typical volcanic and sulfur-rich aerosol mixtures need to be further documented using Lidar, photometer instruments and aerosol sampling. Clearly, aerosol misclassification, cloud contamination, and sensor detection limits remain fundamental barriers to assess vertical aerosol distribution through satellite observation.

8.4. Improving aerosol parameterizations

Sea salt generation
As detailed, the volcanic degassing from MVA occurs in the MABL, where gases are in contact with SS particles. In future investigations addressing their environmental impact with volcanic plume chemistry models, accurate representation of SS particles warrant special attention since their surface may promote overlooked heterogeneous reactions. Conclusion of our tests of two SS generation schemes (CTRL and RUN2) is indicative of the weakness of aerosol models in reproducing SS mass burdens, as investigated by Textor et al. (2006, 2007). According to Jaeglé et al. (2011), the SS parameterization based on SST gives better prediction of the SS mass concentration in GEOS-Chem over warm waters. In contrast, we found larger SSC mass concentrations and quite larger SS AOD in the tropical belt with our model setup based on WRF-Chem, using the same SST as in Jaeglé et al. (2011). A better agreement with observations and empirical laws is found with the original Gong et al. (2003) source function (Figure 6). Clearly, the sensitivity of SS burden and AOD to model physics and aerosol treatments needs to be investigated further, but this topic is beyond the scope of this study.

DMS flux and interaction with volcanic oxidants
The sulfur cycle sensitivity to the oceanic DMS climatology and DMS flux parameterization is
also large in GCMs, as shown at global scale in Boucher et al. (2003). The default database for oceanic DMS and the current DMS scheme in WRF-Chem do not include the most recent oceanic DMS climatology (Lana et al., 2011) or recent advances in DMS flux parameterization (Nightingale et al., 2000). We included these updates and tested their influence on SU and MSA surface concentrations by comparing with the Miami Collection.

In the SW Pacific, the latest oceanic DMS climatology and DMS air-sea transfer function suggested by Lana et al. (2011) improve surface concentrations of MSA compared with observations, but seasonal biases remain. These biases are still unclear and may be due to the paucity of oceanic DMS observations in the region, as signaled in Lana et al. (2011). But model errors can contribute as well, through a wet deposition bias in warm summer (too low) for example. In addition, the model does not include the role of key oxidants involved in the fate of DMS, like reactive BrO released in volcanic plumes (Bani et al., 2009). Their potential role in DMS oxidation signaled by many authors (von Glasow et al., 2004; Faloona, 2009; Gray et al. 2010) may likely be exacerbated in remote regions polluted by volcanic species.

Finally, our new DMS flux parameterization doubles the SO$_2$ biogenic source strength, which becomes far larger than Ambrym emissions. However, the relative impact on SU burdens by DMS fluxes is weaker because of lower efficiency of sulphate formation. This is demonstrated by computing the formation efficiency of SU (i.e., relative SU burden divided by relative source strength; Graf et al., 1997). Specifically, the increase of SO$_2$ biogenic source from 4.6 to 9.3 kT(S).d$^{-1}$ (Table VIII) due to the new DMS flux parameterization produces an increase from 31.1 to 33.7 kT(S), i.e., a net increase of 2.6 kT(S) of SU burden in the model domain. This is similar to the 2.5 kT(S) SU burden due to Ambrym SO$_2$ degassing of 2.7 kT(S).d$^{-1}$ (Table VIII). Using the values, Ambrym volcanic efficiency is 1.1 compared with 0.5 for the DMS source. Volcanic passive degassing has thus a larger relative impact on air chemistry and climate than DMS, presumably due to the higher altitude of emissions (Graf et al., 1997).

Re-suspension in aerosol microphysics

Uncertainties in modeling the wet deposition of soluble tracers provide the largest source of error in simulated AOD (see Figure 16, RUN4 and RUN5). Using SU and SO$_2$ budgets in WRF-Chem, we show that the absence of wet removal result in a very large SU burden of about 84.4 kT(S),
2.7 times the SU burden computed in CTRL, implying that improvement in the wet deposition of soluble tracers is crucial in the SPCZ.

An interesting result is the influence of aerosol re-suspension, which apparently plays a significant role in the vertical redistribution of soluble atmospheric species from the free troposphere to the marine boundary layer in regions of large-scale subsidence. As shown in the vertical profile of the wet deposition tendency term (Figure 15.b), this process provides a dominant source of in the southern tip of the SPCZ and drives the supply of volcanic SU in the remote marine boundary layer. Therefore, this complex aerosol microphysical process exerts a strong control on the cycling of sulfur species and explains the supply of volcanic SU in remote places like Samoa, Rarotonga or Norfolk. Similarly, it may affect the redistribution of volcanic oxidants, resulting in spatial heterogeneities in the remote marine boundary layer, in relation with rain and cloud properties. As suggested by Saide et al. (2012), such irreversibility of aerosol wet removal can no longer be dismissed. This is particularly important in the MVA region for SU burden, since we demonstrated that its omission is equivalent to neglecting a major SU source like passive volcanic degassing. This result confirms that more attention should be devoted in the future to the reliable representation of aerosol wet scavenging processes in global and regional model.

8.5. Correcting AOD estimation

Our study uses the original AeroCom inventory for non-eruptive degassing, but this database is significantly improved by adopting the degassing rate of 5.4 kT(SO$_2$).d$^{-1}$ indicated by Bani et al. (2012) for Vanuatu. As a result, there is a significant improvement between WRF-Chem/GOCART and GSFC/GOCART for AOD (see Figure 10). The global GSFC/GOCART model shows a large bias in volcanic sulfate distribution of the MVA, reducing our confidence in this model’s radiative budget at regional and global scales for that version (G4P0). On the other hand, our regional model suffers from the non-inclusion of eruptive sources in PNG that appears to underestimate the SU burden downwind from PNG (this is also evidenced in the GSFC/GOCART seasonal cycle). This means that accurate emissions from both erupting and continuous degassing volcanoes need to be considered to give a more reliable picture of the distribution of volcanic species in the SW Pacific. This probably is a mandatory step before
investigating their direct and indirect radiative forcing.

Regardless of the quality of aerosol source inventories, large uncertainties exist in present global aerosol simulations, due to the parameterization of atmospheric aerosol processes (Textor et al., 2007). AOD is a valuable proxy to evaluate the aerosol burden and is commonly used to assess the performance of aerosol simulations. But improvements in methods and assumptions of aerosol properties used to calculate AOD (online or offline) are crucial. This is a mandatory task for model-data comparison of optical properties.

While using a similar aerosol and chemistry module, our model AOD (Figure 10.b) sharply contrast with that of the global GSFC/GOCART model (Figure 10.c) using offline meteorological fields of the Goddard Earth Observing System (GEOS). Since sea salt particles dominate the aerosol mixture in the remote marine boundary layer (Figure 11.a and b), their inaccurate representation of sea salt explains the large negative bias over the ocean, as seen by comparing Figure 10.c and Figure 10.a or Figure 10.b. The representation of sea salt properties, including mass concentrations, size distributions and optical properties is a major source of uncertainty as illustrated by the vast literature on this subject. By revising size parameters for the particle size distributions of SSA and SSC in the GOCART sea salt module (Table B 1), we could identify the origin of discrepancies and correct some of the bias.

Specifically, GSFC/GOCART AOD for each aerosol type is calculated using a look-up-table of mass extinction efficiency (β) by assuming that each aerosol type follows a size distribution with parameters given in Table B 1. In GSFC/GOCART, dry effective radii (r_{eff}) values for SSA and SSC are consistent with the OPAC database but they remain larger than those suggested by recent observations (Jaegle et al., 2011) and used in this study. Since assumptions for particle size distributions strongly determine the mass extinction efficiency β (Appendix B and Figure B 1 for SSA and SSC), larger values of r_{eff} for SSA and SSC produce lower β values, explaining why GSFC/GOCART AOD in G4P0 (calculated using Eq.B.6) is systematically low.

Another problem is the fractioning of SS mass concentrations given by GOCART for use in the SSA and SSC AOD calculation. Four mass size bins are considered in GSFC/GOCART (Chin et al., 2002). We show (see Figure 6) that a more reliable AOD computation for SSA and SSC is
obtained by discarding two size bins characterized by giant and ultra giant SS aerosols (dry effective radii $r_{\text{eff}}>0.4\mu m$ and $r_{\text{eff}}>5\mu m$ respectively). This is consistent with recent recommendations (Jaeglé et al., 2011) and also with the remarks made by several authors that AOD is too high for sea salt in WRF-Chem applications, which they usually correct using scale factors in the SS generation schemes (Saide et al., 2012).

9. CONCLUSION

The convective activity of the SPCZ covers the MVA, where the tropospheric emission of sulfate precursors due to passive volcanic degassing is larger than anthropogenic sources and similar to other natural sources (DMS emissions). In this study, simulations of sulfur gases and aerosol concentrations from emissions by the ambrym volcano, a major MVA volcano, are made with WRF-Chem/GOCART, a coupled meteorological-chemistry model, and thoroughly evaluated using satellite and surface observations. Our sensitivity tests and cross-examination results provide a robust understanding of the role of both the Ambrym volcano and its environment in the regional atmospheric sulfur budget. Several key conclusions can be drawn:

1. SPCZ dynamics and its cloud and precipitation properties dictate the fate of volcanic sulfur species through advection, turbulent mixing, and chemical and aerosol microphysical interactions. The most noticeable effect of the Ambrym volcano degassing on the aerosol burden appears through a long-lasting enhancement of the aerosol extinction in the lower troposphere, with a mean regional AOD anomaly in the range [0.03-0.04],

2. Due to the combination of vertical convection in the Tropics and the large-scale horizontal circulation, a significant amount of volcanic species are dispersed across the South Pacific, with distinct transport pathways: the Ambrym volcano acts as a remote source for the aerosol background not only over PNG and East Indonesia, but also for the boundary layer over the Southeastern Pacific, due to the re-suspension of volcanogenic sulfate aerosols from evaporating droplets. and

3. The Ambrym volcano is likely involved in the formation of long-lived stratospheric sulfate aerosols, since small amounts can reach the tropopause. The same could apply for the other passive degassing volcanoes in the Melanesian (and Indonesian) volcanic arcs.
The physical setting and new and adjusted model parameterizations implemented in WRF-Chem/GOCART provide an accurate chemical weather representation that allows the identification of biases both in model outputs and satellite data. We have used diagnostic tools for WRF-Chem/GOCART aerosol modeling, FlexAOD for AOD calculation and satellite observations for aerosol classification, which allowed us to investigate and sometimes correct model errors. Our model performance is limited by:

1. Poor source inventories for the regional context (DMS climatology and biomass-burning inventory),

2. Large sensitivity to model treatments for gas (DMS) and aerosol (sea salt) surface emission (fluxes depend critically on air-sea parameterizations and particles size distribution), and

3. Large uncertainty on aerosol removal mechanisms (sub-grid and grid-scale wet scavenging parameterization and aerosol re-suspension).

Simulated and observed AOD provided a very valuable metrics, and we used them to determine the error bar of our results by conducting sensitivity experiments on specific model-treatments for sources and sinks. Assumptions in the AOD calculation for sea salt aerosols, key players in the aerosol extinction over the MVA, also limit the simulated AOD performance. As investigated by comparing our model results with those from GOCART/GSFC, inadequate size parameters for fine and coarse sea salt aerosols can lead to incorrect AOD levels.

Severe limitations were pointed out in satellite observations, limiting their use in tracking tropospheric volcanic plumes and in retrieving SO$_2$ fluxes. They are:

1. Too low sensor detection capability or weaknesses in aerosol identification algorithms for the CALIOP/CALIPSO (lidar). Obviously, incorrect AODs are reported from the CAD algorithm in context of sea salt mixed with (misclassified) fresh volcanogenic sulfate particles, but that problem still requires future investigations, and

2. OMI volcanic SO$_2$ fluxes are underestimated by 50% over the Vanuatu. The OMI bias has been identified in the study using similar OMI detection limit and irregular sampling in simulated SO$_2$ mass burden. This is consistent with ground field studies in the region.
Finally, by giving a more accurate picture of the fate of SO$_2$ in Ambrym’s volcanic plume, we can ask ourselves what role the Ambrym volcano may play on its regional environment, through the perturbation of climate (direct and indirect forcing of sulfate aerosols), change in the oxidizing capacity of air (through the formation of BrO and ClO), deposition of acidic species (i.e. HCl) and highly toxic elements (i.e. Hg), or the release of key micronutrients at the ocean surface. All these overlooked environmental issues need further dedicated studies to specify the regional perturbation due to smooth or abrupt variations in volcanic emissions, as large fluctuations are a key feature of dominant volcanoes like the Ambrym volcano (Bani et al., 2009 and 2012).

Acknowledgements. The authors appreciate the University of Miami Aerosol Group for providing surface aerosols measurement data over the South Pacific and thank J.M Prospero for constructive comments on their data. We also thank S.R. Freitas, P.I. of the preprocessor PREP-CHEM-SRC and for providing various datasets compatible with the preprocessor used in this study. We also thank the Koninklijk Nederlands Meteorologisch Instituut (KNMI) OMI team and the NASA Goddard Earth Sciences Data and Information Services Center for producing L2 OMI SO$_2$ and MODIS Aerosol/Cloud products and the NASA CALIPSO team for the online free access to CALIPSO archives. We acknowledge the NCAR Earth System Laboratory team for the production of MOZART data used in the chemical forcing. Finally, we appreciate financial support from IRD and Agence National de la Recherche (ANR Cyclones&Climate project) for the PC-Cluster of Noumea that was used for our model simulations. R. Frouin is supported by the NASA under various grants.
APPENDIX A

CALIOP aerosol type classification and uncertainties

Aerosol layers are first discriminated from clouds using the Cloud Aerosol Discrimination (CAD) algorithm (Liu et al. 2009) and then the aerosol type for each feature layer is retrieved using the particle extinction-to-backscatter ratio (S ratio) and the depolarization capability of the lidar at 532 nm (Winker et al. 2009). The aerosol type classification and the estimated aerosol extinction profile for an aerosol feature layer previously identified by the CAD is based on the selection of a ‘best-match’ S ratio from a lookup table of pre-computed S ratio. This look-up table was generated by an extensive clustering analysis of global AERONET measurements (Omar et al., 2005). CALIOP observables (depolarization and backscatter) are used to retrieve the best candidate for S ratio.

The level of confidence in the aerosol retrieval is reflected by a CAD score, which range from -100 to 0. Using recommendations from Yu et al. (2010), we use a CAD score between -100 to -20. Following this first data screening, applied to night time lidar profiles only (with higher signal-to-noise ratio due to the absence of solar background signal), suspicious measurements with cloud optical depth > 0.1 and for which the initial S ratio differs from the final one are removed, according to Yu et al. (2010) and Kittaka et al. (2011).

As synthesized in Oo and Holz (2011, their discussion) significant sources of uncertainty exist in the derived CALIOP AOD and layer aerosol properties, as a consequence of inaccuracies in the S ratio-retrieving scheme. For example, Oo and Holz (2011) showed that in some cases, the CALIOP version 3 algorithm misuses a S ratio of 20 steradian (clean marine, presence of coarse sea salt) rather than 40 steradian (presence of fine dust), inducing a misclassification of fine aerosols over the ocean and underestimation of AOD by a factor of about 2. Our intercomparison of AOD observations given by CALIOP and MODIS tends to confirm the reported errors, but for sea salt mixed with fresh volcanic sulfate particles (Sect. 6.3). The origin of the bias warrants further investigations. However, for particular eruptive events, aerosol optical features and similar AOD quantities in the Ambae (Vanuatu) eruptive plume of 11 April 2010 are well observed in both CALIOP and MODIS (not shown here) and provide useful examples of the CALIOP’s ability to capture shallow ash plume.
APPENDIX B

FlexAOD: description and adjustments

1. Description of FlexAOD

Given the simulated distributions and composition of aerosols, AOD (or \(\tau \), dimensionless) can be calculated from the complex refractive indices, particle-size distributions (hereafter PSD) and hygroscopic properties of aerosols. Originally developed as post-processing tool for the GEOS-Chem model, FlexAOD (http://pumpkin.aquila.infn.it/flexaod/) was adapted here to compute \(\tau \) offline using WRF-Chem outputs. Before introducing FlexAOD, let us detail the relationship between simulated \(\tau \) and aerosol optical and microphysical properties. These relations are helpful to highlight some current issues in \(\tau \) calculation due to assumed dry PSD or to small errors in simulated moisture fields used to derive the hygroscopic growth. \(\tau \) at a given wavelength is the vertical column integration of the specific aerosol extinction coefficient (\(\sigma_{aer} \), unit m\(^{-1}\)) ; that is:

\[
\tau = \int_z \sigma_{aer} \, dz. \tag{B.1}
\]

For a single-component aerosol population comprised of spherical wet particles following a size-resolved number concentration, its specific extinction coefficient \(\sigma_{aer} \) (Eq.B.1) is related to the dimensionless efficiency factor for extinction by the relation (Li et al., 2008):

\[
\sigma_{aer} = \int_{r_w} \pi r_w^2 \frac{dN(r_w)}{dr_w} q_{ext}(\lambda, r_w) dr_w, \tag{B.2}
\]

where \(q_{ext} \) is the efficiency factor, function of wavelength \(\lambda \), wet radius \(r_w \) and is also dependent on wet aerosol composition through its complex refractive indices. In FlexAOD, \(q_{ext} \) is calculated from Mie’s scattering model developed by Mishchenko et al. (1999), with particles assumed spherical. Optical and microphysical properties of water soluble aerosols, like sea salt and sulfate, are very sensitive to the hygroscopic growth with \(RH \), resulting in a mass and size change due to the uptake of water (hereafter the swelling effect). In the calculation of \(q_{ext} \) with the Mie code, the swelling effect for the size change is considered through \(r_w \), while the change of optical properties due to the uptake of water is incorporated using the combination of the refractive indices of water and dry aerosols. In FlexAOD, wet aerosol optical properties are based on an assumed dry aerosol PSD for each aerosol component and by including the swelling effect using a set of hygroscopic growth factors at representative \(RH \) (Chin et al., 2002).
One key parameter for relating the radiative properties to a given dry PSD is the effective radius r_{eff}, which is the cross-section weighted mean radius (Chin et al. 2002) defined as:

$$r_{eff} = \frac{\int_0^\infty \pi r^3 n(r)dr}{\int_0^\infty \pi r^2 n(r)dr}, \quad (B.3)$$

where $n(r)$ is the PSD expressing the size-resolved number concentration as a function of dry radius r. For sea salt or sulfate aerosols, their PSDs can be well approximated by a lognormal distribution (see Li et al., 2008):

$$n(r) = \frac{dN(r)}{dr} = \frac{N_0}{\ln\sigma_g \sqrt{2\pi}} e^{\frac{-(\ln r - \ln r_g)^2}{2(\ln\sigma_g)^2}}, \quad (B.4)$$

where N_0 is the total number density, r_g and σ_g are the geometric mean radius and standard deviation respectively. Two parameters can be retrieved from the properties of lognormal distribution (Li et al., 2008). They are the effective radius r_{eff} defined above (Eq.B.3), and the effective variance ν_{eff}:

$$r_{eff} = \sigma_g e^{2.5(\ln\sigma_g)^2}, \quad (B.5)$$

$$\nu_{eff} = e^{((\ln\sigma_g)^2)} - 1, \quad (B.6)$$

Finally, as shown by Chin et al. (2002), one convenient way to relate τ with the simulated dry aerosol mass loading $M_{d,i}$, r_{eff} and the swelling effect is the relation:

$$\tau = \sum_{i=(SU\ldots BC)} \int_{Z} \sigma_{aer,i} dz = \sum_{i=(SU\ldots BC)} \int_{Z} \beta_i M_{d,i} dz, \quad (B.7)$$

where i is the aerosol type used in the GOCART model OC, BC, SU, SS and DU and β (m2.g$^{-1}$) the mass extinction efficiency with expression:

$$\beta_i = \frac{3}{4} \frac{q_{ext,i} M_i}{r_{eff,i} \rho_i M_{d,i}} , \quad (B.8)$$

where ρ_i is the component density, M_i the column aerosol mass in the grid-cell and $q_{ext,i}$ the aforementioned efficiency factor for extinction, with the swelling effect incorporated in these two quantities. It is worth noting that in global aerosol models based on GOCART (for example GSFC/GOCART), lookup tables of precomputed values of βs are used to derive the wavelength aerosol optical extinction for each aerosol type. Such precomputed and hardcoded values are strongly dependent on assumed aerosol properties, including their size parameters. Indeed, as shown above, since σ_{aer} is proportional to the square of wet radius (Eq.B.2), simulated AOD is very sensitive to the assumed aerosol dry PSD, with parameters given in Eq.B.4, B.5 and B.6. Then, as shown in Eq.B.7, since all the humidification effects detailed above are embodied in the
value of β, this quantity will be very useful later to investigate how assumptions on PSD or model RH errors can influence the simulated AOD.

2. Adjustments and sensitivity

In FlexAOD, AOD calculation follows the methodology developed by Martin et al. (2003), by assuming external mixing of different aerosol types. Hygroscopic properties and refractive indices of individual aerosol types are taken from the Optical Properties of Aerosol and Clouds (OPAC, Hess et al. 1998) for eight relative humidity bins ($RH = 0, 50, 70, 80, 90, 95, 98$ and 99%), but refractive indices for dust are taken from Sinyuk et al. (2003). Aerosol properties at the eight RH bins are used to calculate a lookup table of aerosol optical properties, including q_{ext} and r_{eff} modified by the swelling effect, using the Mie code. Vertical profiles of simulated RH are then used to interpolate the specific optical properties at each model level. GOCART is a bulk (mass only) aerosol model that only gives M_d for each dry size bin, without any additional information on their specific PSD. Therefore, each aerosol mass size bin is assumed to have a PSD with geometric parameters defined in Table B 1, gray shaded row. These geometric parameters for SU, OC and BC have been recently adjusted following results from Drury et al. (2010).

AOD changes due to modified SSA and SSC dry PSDs

As shown by Li et al. (2008) and recently by Jaeglé et al. (2011), AERONET observations in remote islands and field studies show that the dry sea salt effective radius for SSA (0.73µm) and SSC (6.13µm) are unreasonably large in OPAC. Jaeglé et al. (2011) suggest new values for these parameters, with 0.13µm and 0.95µm for SSA and SSC respectively, at present used in GEOS-Chem. Inspired by these remarks, dry effective radius for SSA and SSC are also reduced in our study to 0.25µm and 1.1µm respectively. In the GOCART sectional scheme for sea salt, SS are represented with four mass size bins with dry size bins: 0.1-0.5, 0.5-1.5, 1.5-5, and 5-10 µm, and dry effective radii 0.3, 1.0, 3.2 and 7.5µm respectively. Our changes on SSA and SSC imply that the first and second mass size bins in GOCART now have a similar dry PSD to that of SSA and SSC respectively. According to Jaeglé et al. (2011), short-lived giant SS with dry radius above 4 µm are optically less important and could be neglected in the AOD computation. This suggestion implies considering GOCART SS concentrations for 1.5-5 and 5-10 size bins as giant and ultra-
giant sea salt respectively. Consequently, they are excluded from the AOD computation.

As stressed above, modified dry PSD values of water-soluble SU, SSA and SSC are expected to produce large changes in mass extinction efficiencies β. For example, in Table B 1, the effective radii r_{eff} are reduced by factors of 2, 3 and 5.5 for SU, SSA and SSC respectively in comparison with GSFC/GOCART. The response on β at $\lambda=550$ nm is shown in Figure B 1 for SU, SSA and SSC and shows a strong increase for these components. Larger size parameters result in lower AOD values and the sea salt AOD is biased low in GSFC/GOCART, as discussed in Sect. 8.5. But Figure B 1 also shows the strong RH dependence of β, as discussed by Chin et al. (2002). Contrasting with dryer regions, the swelling of water-soluble aerosols in the saturated tropical belt is promoted and β becomes very sensitive to even minor errors in RH. Those errors may be artificially introduced by using wrong meteorological moisture fields, which is common in GCMs as investigated by John and Soden (2007).
APPENDIX C

New and revised aerosol processes in WRF-Chem/GOCART

Here, distributions of aerosols and gases are simulated using the WRF-Chem V3.3.1 public release coupled online with GOCART. Due to our choices of physics and recent advances in aerosol modeling for source and sink mechanisms, we revised some of the proposed schemes and implemented new modules in the modeling system. Details of the revised modeling system are given in Figure C 1, with revised parts highlighted by cross-hatching. The most relevant changes are detailed in points (1), (2), and (3) below. Points (4) and (5) give further details about the turbulent vertical mixing of tracers and known limitations.

(1) Natural emission as a function of wind and SST

The GOCART emission module computes the generation of DU and SS as a function of wind speed and gaseous DMS exchange at the ocean surface as a function of both wind and SST. Details for DU emission using the source function from Ginoux et al. (2001) are given in Zhao et al. (2010) and their implementation in WRF-CHEM V3.3.1 are kept unchanged for our study. The biogenic emission of DMS is parameterized using the semi-empirical scheme of Liss and Merlivat (1986) with DMS data from Kettle et al. (1999). To test the sensitivity of DMS to both the air-sea gas exchange parameterization and the database, we added in the GOCART DMS emission module an alternate scheme from Nightingale et al. (2000). In addition, updated climatological DMS fields from Lana et al. (2011) are preprocessed using PREP-CHEM-SRC (Freitas et al., 2011). As for sea salt, which is a key aerosol in the marine boundary layer, only the Gong et al.’s (2003) source function is proposed in the GOCART emission module. In there, the SS particle number density function (unit: particles m$^{-2}$s$^{-1}$µm$^{-1}$) is expressed as:

\[
\frac{dF}{dr_{80}} = 1.373 u_{10m}^{3.41} r_{80}^{-A} (1 + 0.057 r_{80}^{3.45}) \times 10^{1.607 e^{-B^{2}}},
\]

with \(A = 4.7(1 + \Theta r_{80})^{-0.017} r_{80}^{-1.44}\) and \(B = [0.433 - \log_{10}(r_{80})]/0.433\). \(r_{80}\) is the particle radius at \(RH=80\%\) and \(u_{10m}\) the 10-m wind speed. The parameter \(\Theta\) (=30) is an adjustable parameter, which controls the shape of the particle-size distribution of submicron SS aerosols (Gong et al., 2003). To test the sensitivity of SS mass concentrations and SS AOD to the SS source function,
we implemented another source function from Jaeglé et al.’s (2011). Like in Gong et al. (2003), it is based on the original whitecap coverage function defined by Monaham et al. (1986) that varies with wind speed, but the SS generation process here is limited by SST, as follows:

$$\frac{dF}{dr_{80}} = (0.3 + 0.1 \times \text{SST} - 0.0076 \times \text{SST}^2 + 0.00021 \times \text{SST}^3) \times (1 + 0.057 \times r_{80}^{3.45}) \times 10^{1.607e^{-0.82}}$$

with A and B are parameters defined above and SST is in °C.

(2) Grid-scale wet deposition and tracer re-suspension

In WRF-Chem/GOCART, only a simple first-order loss process for grid-scale wet deposition is proposed. This scheme only includes in-cloud scavenging (or rainout by nucleation), but do not include below-cloud scavenging (or washout by impaction) of tracers. In addition, tracer re-suspension of soluble species following the evaporation of rain droplets was not implemented for grid-scale wet deposition. Therefore, we added these new capabilities in the model using the algorithm described in Jacob et al. (2000b) and Liu et al. (2001), with rainout, washout and grid-scale re-suspension parameterized according to Giorgi and Chameides (1986) and Balkanski et al. (1993).

The description of the new wet deposition scheme, tied to the Purdue Lin bulk microphysics (Table III), is briefly summarized here. Within cloud, cloud- and ice-crystal-borne aerosols and gases dissolved in cloud water are collected by hydrometeors using the first order loss rate of cloud to precipitation given by the Purdue Lin scheme. Currently, only grid cells including hydrometeors in liquid phase are activated in wet deposition, which is an acceptable assumption in the tropics and subtropics. In the absence of a more realistic but computationally-expensive cloud-aerosol microphysics scheme, the scavenging efficiency of soluble gases (including SO$_2$) and aerosols is fixed to 100% (solubility = 1) and the fraction f_{scav} of tracer experiencing rainout is inferred from the Purdue Lin scheme parameters, according to Jacob et al. (2000b):

$$f_{scav} = \frac{Q}{k(L+W)}$$

where Q (cm3 H$_2$O.cm$^{-3}$ air.s$^{-1}$) is the rate of new precipitation formation in the gridbox, L and W are the cloud condensed and ice water content, respectively (cm3 ICEorH$_2$O.cm$^{-3}$ air), and k (s$^{-1}$) is the conversion of cloud water to precipitation (or auto-conversion rate, including accretion of cloud water by falling liquid and frozen hydrometeors). Below cloud, aerosols are also removed by washout, i.e., wet deposition by falling droplets. But part of it can be released back to the
atmosphere as rain droplets evaporate, SO$_2$ being then totally converted to sulfate aerosol.

(3) Convective tracer transport
WRFV3.3.1 includes the deep convection parameterization inspired from Zhang and McFarlane (ZM, 1995) scheme, with algorithm’s details given in the CAM3 documentation (Collins et al., 2004 and http://www.cesm.ucar.edu/models/atm-cam/docs/description). In WRF-Chem, the convective transport of chemical tracers was not tied with the ZM mass-flux scheme. In this study, we consistently used for chemical tracers the vertical mass fluxes and entrainment/detrainment rates given by ZM deep convection. This implementation based on the original convective tracer transport treatment for CAM3 (See CAM3 documentation, 4.1.5 Deep Convective Tracer Transport) is part of a new WRF-Chem module now available to the WRF-Chem community.

(4) Subgrid-scale turbulent vertical mixing
The subgrid scale vertical mixing of aerosols is made outside the WRF PBL module but it remains tied to the choice of PBL scheme as it uses its eddy diffusion coefficients for heat K_h. This limits the choice of PBL scheme available in WRF-Chem, as pointed out by Pleim (2011). In WRFV3.3.1, only the YSU scheme (Hong et al. 2006) and Mellor-Yamada based schemes, both the MYJ (Janjić 2002) and MYNN (Nakanishi and Niino, 2004) are available. But, for our choice of UW-CAM5 PBL, K_h was not readily available. Nevertheless, it can be retrieved from the scheme’s turbulence quantities, and in our study this quantity is used to derive the vertical diffusion of aerosols.

(5) Known limitations
Absence of aerosol transport related to shallow convection
It is worth noting that the aerosol vertical mixing and transport needs to account for shallow convection in UW-CAM5, which is currently not provided within WRF-Chem. To assess the relevance of this missing ingredient, mean updraft mass fluxes associated with deep and shallow convection are compared in Figure C 2, for the convective box and the southeastern tip of the SPCZ defined in Figure 13.d. Looking at mass transport and altitude reached, the convective transport by the Zhang and MacFarlane deep convection scheme is clearly more efficient than shallow convection.
Convective wet deposition not included

Furthermore, the convective transport described in (3) implies that aerosols are lofted upward without wet removal. To balance the convective tracer venting, empirical scavenging treatments tied with the mass flux and cloud scheme for deep convection are commonly applied in climate models with coarse resolution. Herein, the solubility factor is used like a tunable parameter to adjust the tracer lifetime, as detailed in Fan and Toon (2011). Moreover, using a global climate model with different treatments for the convective tracer transport, Croft et al. (2012) show that the introduction of sophisticated explicit aerosol-cloud microphysical processes affects strongly the aerosol burden, with a factor of two compared to the standard model without sophisticated parameterization for convective wet scavenging. This complements the Textor et al. (2006) remarks about the large sensitivity of convective wet scavenging to the convection scheme. In our model setup, the convective wet scavenging of tracers is not included. The sensitivity to this will be explored in future simulations.
REFERENCES

Cai W *et al.*, 2012: More extreme swings of the South Pacific Convergence Zone due to

Fenn, M. A., et al. (1999), Ozone and aerosol distributions and air mass characteristics over the South Pacific during the burning season, J. Geophys. Res., 104(D13), 16197–16212

Gray B, Wang Y, Gu D, Bandy A, Mauldin L, Clarke A, Alexander B, Davis DD. Sources, transport and sinks of SO2 over the equatorial Pacific during the Pacific Atmospheric Sulfur

Mishchenko, M. I., J. M. Dlugach, E. G. Yanovitskij, and N. T. Zakharova, (1999), Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and

Oppenheimer, C., Scaillet, B and Martin, R.S., 2011, Sulfur degassing from volcanoes: source conditions, surveillance, plume chemistry and impacts, Reviews in Mineralogy and Geochemistry, 73, 363 - 421. doi:10.2138/rmg.2011.73.13

TABLE CAPTIONS

Table I: Daily emission for natural and anthropogenic SO2 and yearly emission for carbonaceous aerosol specified in the regional model. Anthropogenic emissions are constrained using the EDGAR database, while non-erupting volcanic emissions are given by the AeroCom database, after revision using the last volcanic degassing budget for Vanuatu (Bani et al., 2012). The oceanic biogenic SO2 (DMS) production is given by our model using various DMS flux schemes and oceanic DMS databases. For information, a global model SO2 source budget is also given.

Table II: Description of the satellite sensors and products used in this study.

Table III: Physics parameterization selected in WRF-ARW V3.3.1.

Table IV: Reaction rates used in the GOCART chemistry module.

Table V: Description of sensitivity experiments.

Table VI: Sensitivity of top-down SO2 mass burden and SO2 lifetime associated with Ambrym degassing to satellite subsampling and integration area. Calculations are made for the 2-year period 01-oct-2006 to 01-oct-2008.

Table VII: Observed and simulated mean surface concentrations of Methanesulfonate (MSA), non-seasalt sulfate (SU), Dust (DU) and sea-salt (SS) at six sites across SW Pacific. Observations from the University of Miami Aerosol Group are given in gray rows for various recording periods (column 2). Contaminated sites due to surf conditions are indicated with bold SS values. DU is derived from Aluminum concentrations using the relation DU=Al/0.08. Model surface concentrations are extracted from the first model level. Observations for low wind speed (<1.8 m/s) are excluded and this threshold value is also applied to the model (Savoie and Prospero, 1989). Model SS and DU concentrations are computed by summing the four and five size bins quantities given by the GOCART aerosol model respectively. Changes in surface concentrations for three sensitivity experiments are indicated in percent of the CTRL run values.

Table VIII: WRF-Chem budgets for sulfur species (sulfur dioxide and sulfate) in each sensitivity experiments (01-oct-2006 to 01-oct-2008).

Table B 1: Particle density and dry size parameters (geometric mean radius r_g, standard deviation σ_g, effective radius r_{eff} and affective variance ν_{eff}) in lognormal dry size distributions for sulfate (SU), organic carbon (OC), black carbon (BC) sea-salt accumulation (SSA) and coarse mode (SSC). The parameters used in this study are in the gray shaded rows. Size parameters based on OPAC (Hess et al.1998), used in GSFC/GOCART and those suggested by Chin et al. (2002) or Jaeglé et al. (2011) for sea-salt are given for comparison.
Table I: Daily emission for natural and anthropogenic SO$_2$ and yearly emission for carbonaceous aerosol specified in the regional model. Anthropogenic emissions are constrained using the EDGAR database, while non-erupting volcanic emissions are given by the AeroCom database, after revision using the last volcanic degassing budget for Vanuatu (Bani et al., 2012). The oceanic biogenic SO$_2$ (DMS) production is given by our model using various DMS flux schemes and oceanic DMS databases. For information, a global model SO$_2$ source budget is also given.

<table>
<thead>
<tr>
<th></th>
<th>SO$_2$ emissions [kT(SO$_2$).d$^{-1}$]</th>
<th>Carbonaceous emissions [kT(BC).year$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anthropogenic</td>
<td>Volcanic degassing</td>
</tr>
<tr>
<td>Australia</td>
<td>8.8</td>
<td>-</td>
</tr>
<tr>
<td>New-Zealand (North)</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>Philippines</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1.4</td>
<td>3.7</td>
</tr>
<tr>
<td>total</td>
<td>11.8</td>
<td>5.2</td>
</tr>
<tr>
<td>Pacific island countries (see details below)</td>
<td>0.1</td>
<td>12.0</td>
</tr>
<tr>
<td>New-Caledonia</td>
<td>0.050</td>
<td>-</td>
</tr>
<tr>
<td>Fiji</td>
<td>0.009</td>
<td>-</td>
</tr>
<tr>
<td>Papua New-Guineaa</td>
<td>0.037</td>
<td>6.5</td>
</tr>
<tr>
<td>Polynesia</td>
<td>0.007</td>
<td>-</td>
</tr>
<tr>
<td>Solomon Islands</td>
<td>0.002</td>
<td>0.1</td>
</tr>
<tr>
<td>Samoa</td>
<td>0.003</td>
<td>-</td>
</tr>
<tr>
<td>Vanuatub</td>
<td>>0.001</td>
<td>5.4</td>
</tr>
<tr>
<td>SW Pacific</td>
<td>11.9</td>
<td>17.2</td>
</tr>
<tr>
<td>Globald</td>
<td>300-530</td>
<td>20-80</td>
</tr>
</tbody>
</table>

a including Bougainville Island. Source: non-eruptive volcanic emission from the AeroCom database

b only Ambrym, source Bani et al (2012). This new rate associated with the largest persistent source, Ambrym, is more than twice the AeroCom estimation for the Vanuatu group (11 volcanoes, total emission: 2.15 ktons(SO$_2$).d$^{-1}$, mean [09-2005:10-2008])

c range of oceanic biogenic SO$_2$ flux using respectively: the Kettle et al. (1999) oceanic DMS database with flux parameterization of Liss and Merlivat (1986); and the Lana et al. (2011) DMS database with flux parameterization of Nightingale et al. (2000)

d SO$_2$ budget range given by Faloona (2009) using data from Textor et al. (2006).
Table II: Description of the satellite sensors and products used in this study

<table>
<thead>
<tr>
<th>Sensor/Satellite</th>
<th>Operational lifetime, spatial resolution, equatorial crossing time,</th>
<th>Geophysical products</th>
<th>Product/Collection</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIS/Aqua</td>
<td>Since 7-2002, daily contiguous 2330-km swath 13:30p.m LT</td>
<td>Total AOD 550 nm, FC</td>
<td>MOD08_D3, collection 5.1</td>
<td>Remer, 2005</td>
</tr>
<tr>
<td>CALIOP/CALIPSO</td>
<td>Since 6-2006, 100m footprint size 13:31p.m LT and 1:30a.mLT, with a repeat cycle of 16 days (twice a day at 1° spatial resolution)</td>
<td>Aerosol layer altitude, thickness and AOD, Aerosol subtype, Total AOD 532nm, Cloud Optical depth</td>
<td>Level2 Version3.0 aerosol layer</td>
<td>Winker, 2009</td>
</tr>
<tr>
<td>OMI/Aura</td>
<td>Since 7-2004, Daily contiguous 2600km swath, 13x24km (nadir) 1:38p.m LT</td>
<td>SO$_2$, Cloud Radiance Fraction</td>
<td>OMI SO$_2$ Level2 Version3</td>
<td>Torres, 2007</td>
</tr>
</tbody>
</table>
Table III: Physics parameterization selected in WRF-ARW V3.3.1.

<table>
<thead>
<tr>
<th>Physical models</th>
<th>Parameterization</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land-surface model</td>
<td>Unified Noah</td>
<td>Chen and Dudhia, 2001</td>
</tr>
<tr>
<td>Oceanic surface layer</td>
<td>Monin-Obukhov scheme</td>
<td>Jiménez et al., 2012 (With drag coefficient based on Charnock (1955) formulation)</td>
</tr>
<tr>
<td>Microphysics</td>
<td>Purdue Lin (One moment)</td>
<td>Lin et al., 1983</td>
</tr>
<tr>
<td>PBL and Shallow Convection</td>
<td>UW CAM5 moist turbulence with explicit entrainment at the top of the PBL and shallow convection, unified parameterization</td>
<td>Bretherton and Park, 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Park and Bretherton, 2009</td>
</tr>
<tr>
<td>Deep Convection</td>
<td>Zhang-McFarlane</td>
<td>Zhang and McFarlane, 1995</td>
</tr>
<tr>
<td>Longwave and Shortwave radiation</td>
<td>CAM3 scheme</td>
<td>Community Atmospheric model Version 3 (Collins et al, 2004). (With cloud fraction computed from Xu and Randall, 1996)</td>
</tr>
</tbody>
</table>

Table IV: Reaction rates used in the GOCART sulfur chemistry module.

Gas chemistry (unit: cm³ molec⁻¹ s⁻¹)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMS+OH->SO₂+ ...</td>
<td>(K_1 = 1.2 \times 10^{-11} e^{-260.0/T}) (OH abstraction channel)</td>
<td>Demore et al., 1997</td>
</tr>
<tr>
<td>DMS+OH->0.75SO₂+0.25MSA</td>
<td>(K_2 = 1.7 \times 10^{-42} e^{7810/T}[O_3]/(1+\alpha))</td>
<td>Demore et al., 1997</td>
</tr>
<tr>
<td></td>
<td>(\alpha = 5.5 \times 10^{-31} e^{7460/T} [O_2]) (OH addition channel)</td>
<td></td>
</tr>
<tr>
<td>DMS+NO₃->SO₂+ ...</td>
<td>(K_3 = 1.9 \times 10^{-12} e^{-500/T})</td>
<td>Demore et al., 1997</td>
</tr>
<tr>
<td>SO₂+OH->sulfate+ ...</td>
<td>(K_4 = K_0 \times [O]/(K_0 + K_a)) (0.6^\beta) (K_0 = 3.3 \times 10^{-31}) ((300/T)^{0.3} [M]) (K_a = 1.6 \times 10^{-12}) (\beta = 1/(1+\log(K_0/K_a))^2)</td>
<td>Demore et al., 1997</td>
</tr>
</tbody>
</table>

Aqueous Chemistry (unit: l molec⁻¹ s⁻¹)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSO₃⁺+H₂O₂->sulfate</td>
<td>(K_5 = 6.3 \times 10^{-14} e^{-4760/T})</td>
<td>Jacob, 1986</td>
</tr>
</tbody>
</table>

Solubility constants (unit: molec.l⁻¹ atm⁻¹)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂(g)<->SO₂(aq)</td>
<td>(1.22 e^{3145.5/(T-1/298.15)})</td>
<td>Jacobson, 2005</td>
</tr>
<tr>
<td>H₂O₂(g)<->H₂O₂(aq)</td>
<td>(7.45 \times 10^4 e^{6621/(T-1/298.15)})</td>
<td>Jacobson, 2005</td>
</tr>
</tbody>
</table>

Dissociation constant (unit: molec.l⁻¹)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂SO₃<->HSO₃⁻+H⁺</td>
<td>(1.30 \times 10^{-2} e^{2013/(T-1/298.15)})</td>
<td>Jacob, 1986</td>
</tr>
<tr>
<td>HSO₃⁻<->SO₃²⁻+H⁺</td>
<td>(6.31 \times 10^8 e^{1505/(T-1/298.15)})</td>
<td>Jacob, 1986</td>
</tr>
</tbody>
</table>

\([M]=\text{air density (molec air.cm}^{-3}\)
Table V: Description of sensitivity experiments.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Physics</th>
<th>Wet deposition scheme</th>
<th>Tracer resuspension</th>
<th>DMS sea-air transfer scheme</th>
<th>Oceanic DMS climatology</th>
<th>Sea-salt source function</th>
<th>Volcanic Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN1</td>
<td>Table III</td>
<td>Jacob et al. (2000)</td>
<td>Yes</td>
<td>Liss and Merlivat (1986)</td>
<td>Kettle et al. (1999)</td>
<td>Gong (2003)</td>
<td>As in Table I, but with Vanuatu volcanic degassing shut down</td>
</tr>
<tr>
<td>RUN2</td>
<td>Table III</td>
<td>Jacob et al. (2000)</td>
<td>Yes</td>
<td>Liss and Merlivat (1986)</td>
<td>Kettle et al. (1999)</td>
<td>Jaeglé et al. (2011)</td>
<td>Table I</td>
</tr>
<tr>
<td>RUN4</td>
<td>Table III</td>
<td>No</td>
<td>No</td>
<td>Liss and Merlivat (1986)</td>
<td>Kettle et al. (1999)</td>
<td>Gong (2003)</td>
<td>Table I</td>
</tr>
</tbody>
</table>
Table VI: Sensitivity of top-down SO$_2$ mass burden and SO$_2$ lifetime associated with Ambrym degassing to satellite subsampling and integration area. Calculations are made for the 2-year period 01-oct-2006 to 01-oct-2008.

<table>
<thead>
<tr>
<th>SO$_2$ mass burden from</th>
<th>Domain size</th>
<th>Sampling Description</th>
<th>Mean [Ktons(SO$_2$)]</th>
<th>Std</th>
<th>Lifetime [hours]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMI</td>
<td>14° by 10°</td>
<td>OMI, original</td>
<td>2.26</td>
<td>0.47</td>
<td>10</td>
</tr>
<tr>
<td>Model</td>
<td>14° by 10°</td>
<td>Cells coincident with OMI pixels</td>
<td>2.43</td>
<td>0.44</td>
<td>11</td>
</tr>
<tr>
<td>Model</td>
<td>14° by 10°</td>
<td>Grid mesh</td>
<td>3.73</td>
<td>0.03</td>
<td>17</td>
</tr>
<tr>
<td>Model</td>
<td>WRF domain</td>
<td>Grid mesh</td>
<td>4.54</td>
<td>0.04</td>
<td>20</td>
</tr>
</tbody>
</table>
Table VII: Observed and simulated mean surface concentrations of Methanesulfonate (MSA), non-seasalt sulfate (SU), Dust (DU) and sea-salt (SS) at six sites across SW Pacific. Observations from the University of Miami Aerosol Group are given in gray rows for various recording periods (column 2). Contaminated sites due to surf conditions are indicated with bold SS values. DU is derived from Aluminum concentrations using the relation DU=Al/0.08. Model surface concentrations are extracted from the first model level. Observations for low wind speed (<1.8 m/s) are excluded and this threshold value is also applied to the model (Savoie and Prospero, 1989). Model SS and DU concentrations are computed by summing the four and five size bins quantities given by the GOCART aerosol model respectively. Changes in surface concentrations for three sensitivity experiments are indicated in percent of the CTRL run values.

<table>
<thead>
<tr>
<th>Location</th>
<th>Recording period</th>
<th>MSA [µg/m³]</th>
<th>SU [µg/m³]</th>
<th>SU Changes due to:</th>
<th>DU [µg/m³] (Al/0.08)</th>
<th>SS [µg/m³]</th>
<th>Changes due to SS scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nauru</td>
<td>05°S 166.95°E</td>
<td>-</td>
<td>0.154</td>
<td></td>
<td>0.100</td>
<td>153.837</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-Mar-1983</td>
<td>0.021</td>
<td>0.184</td>
<td></td>
<td>0.118</td>
<td>14.563</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02-Oct-1987</td>
<td>0.021</td>
<td>0.181</td>
<td>-1.6%</td>
<td>0.118</td>
<td>14.563</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02-Sep-1987</td>
<td>0.021</td>
<td>0.184</td>
<td></td>
<td>0.118</td>
<td>14.563</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03-Mar-1995</td>
<td>0.042</td>
<td>0.237</td>
<td>+28.8%</td>
<td>0.118</td>
<td>14.563</td>
<td></td>
</tr>
<tr>
<td>Funafuti-Tuvalu</td>
<td>08°S 179.20°W</td>
<td>0.016</td>
<td>0.148</td>
<td></td>
<td>0.100</td>
<td>195.348</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08-Apr-1983</td>
<td>0.016</td>
<td>0.145</td>
<td>-2.0%</td>
<td>0.100</td>
<td>14.753</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31-Jul-1987</td>
<td>0.016</td>
<td>0.148</td>
<td></td>
<td>0.100</td>
<td>14.753</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25-Apr-1987</td>
<td>0.029</td>
<td>0.192</td>
<td>+29.7%</td>
<td>0.100</td>
<td>14.753</td>
<td></td>
</tr>
<tr>
<td>American Samoa</td>
<td>14.25°S 170.58°W</td>
<td>0.023</td>
<td>0.337</td>
<td></td>
<td>0.252</td>
<td>18.134</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19-Mar-1983</td>
<td>0.016</td>
<td>0.148</td>
<td></td>
<td>0.100</td>
<td>19.980</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31-Mar-1999</td>
<td>0.015</td>
<td>0.127</td>
<td></td>
<td>0.100</td>
<td>19.980</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-Mar-1994</td>
<td>0.023</td>
<td>0.152</td>
<td>+33.3%</td>
<td>0.100</td>
<td>19.980</td>
<td></td>
</tr>
<tr>
<td>Rarotonga</td>
<td>21.25°S 159.75°W</td>
<td>0.019</td>
<td>0.107</td>
<td></td>
<td>0.106</td>
<td>76.040</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-Mar-1983</td>
<td>0.012</td>
<td>0.098</td>
<td></td>
<td>0.246</td>
<td>23.290</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-Jun-1994</td>
<td>0.012</td>
<td>0.091</td>
<td>-7.7%</td>
<td>0.246</td>
<td>23.290</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22-Mar-1995</td>
<td>0.013</td>
<td>0.122</td>
<td></td>
<td>0.246</td>
<td>31.768</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-Mar-1996</td>
<td>0.028</td>
<td>0.264</td>
<td>+18.4%</td>
<td>0.246</td>
<td>31.768</td>
<td></td>
</tr>
<tr>
<td>New Caledonia</td>
<td>22.15°S 167.00°E</td>
<td>0.020</td>
<td>0.436</td>
<td></td>
<td>0.171</td>
<td>31.862</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-Aug-1983</td>
<td>0.013</td>
<td>0.223</td>
<td></td>
<td>0.636</td>
<td>30.155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-Oct-1985</td>
<td>0.013</td>
<td>0.143</td>
<td>-55.9%</td>
<td>0.636</td>
<td>30.155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-Sep-1985</td>
<td>0.013</td>
<td>0.223</td>
<td></td>
<td>0.636</td>
<td>38.577</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-Feb-1997</td>
<td>0.028</td>
<td>0.264</td>
<td>+18.4%</td>
<td>0.636</td>
<td>30.155</td>
<td></td>
</tr>
<tr>
<td>Norfolk Island</td>
<td>29.08°S 167.98°E</td>
<td>0.025</td>
<td>0.273</td>
<td></td>
<td>0.841</td>
<td>25.998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27-May-1983</td>
<td>0.012</td>
<td>0.190</td>
<td></td>
<td>1.011</td>
<td>29.568</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21-Feb-1997</td>
<td>0.012</td>
<td>0.175</td>
<td>-8.5%</td>
<td>1.011</td>
<td>29.568</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26-May-1997</td>
<td>0.012</td>
<td>0.190</td>
<td></td>
<td>1.011</td>
<td>29.896</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23-Feb-1998</td>
<td>0.026</td>
<td>0.226</td>
<td>+18.9%</td>
<td>1.011</td>
<td>29.568</td>
<td></td>
</tr>
</tbody>
</table>
Table VIII: WRF-Chem budgets for sulfur species (sulfur dioxide and sulfate) in each sensitivity experiments (01-oct-2006 to 01-oct-2008)

<table>
<thead>
<tr>
<th></th>
<th>CTRL</th>
<th>RUN1</th>
<th>RUN3</th>
<th>RUN4</th>
<th>RUN5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_2$, Sources ($kT S$.day$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Volcanic degassing</td>
<td>8.6</td>
<td>6.4</td>
<td>8.6</td>
<td>8.6</td>
<td>8.6</td>
</tr>
<tr>
<td>Biomass Burning</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DMS</td>
<td>4.6</td>
<td>4.6</td>
<td>9.3</td>
<td>4.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Total SO$_2$ source</td>
<td>19.3</td>
<td>17.1</td>
<td>24.0</td>
<td>19.3</td>
<td>19.3</td>
</tr>
<tr>
<td>SO$_2$, Sinks ($kT S$.day$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidation in gas phase</td>
<td>2.0</td>
<td>1.7</td>
<td>2.3</td>
<td>2.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Oxidation in aqueous phase</td>
<td>3.1</td>
<td>2.6</td>
<td>3.6</td>
<td>4.4</td>
<td>3.1</td>
</tr>
<tr>
<td>Dry deposition</td>
<td>8.5</td>
<td>7.2</td>
<td>9.4</td>
<td>8.7</td>
<td>8.5</td>
</tr>
<tr>
<td>Wet deposition</td>
<td>1.9</td>
<td>1.6</td>
<td>2.2</td>
<td>0</td>
<td>1.9</td>
</tr>
<tr>
<td>Total SO$_2$ sink</td>
<td>15.5</td>
<td>13.1</td>
<td>17.4</td>
<td>15.4</td>
<td>15.5</td>
</tr>
<tr>
<td>SO$_2$, Burden (kT S)</td>
<td>14.8</td>
<td>12.6</td>
<td>16.3</td>
<td>16.3</td>
<td>14.8</td>
</tr>
<tr>
<td>Difference relative to CTRL (kT S)</td>
<td>0</td>
<td>-2.3</td>
<td>1.5</td>
<td>1.5</td>
<td>0.0</td>
</tr>
<tr>
<td>SO$_2$, lifetime (day)</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>SULFATE, Sources ($kT S$.day$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production in gas phase</td>
<td>2.0</td>
<td>1.7</td>
<td>2.3</td>
<td>2.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Production in aqueous phase</td>
<td>3.1</td>
<td>2.6</td>
<td>3.6</td>
<td>4.4</td>
<td>3.1</td>
</tr>
<tr>
<td>Wet resuspension</td>
<td>2.0</td>
<td>1.8</td>
<td>2.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total SULFATE source</td>
<td>7.1</td>
<td>6.1</td>
<td>8.1</td>
<td>6.7</td>
<td>5.1</td>
</tr>
<tr>
<td>SULFATE, Sink ($kT S$.day$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry deposition</td>
<td>0.6</td>
<td>0.6</td>
<td>0.7</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Wet deposition</td>
<td>5.4</td>
<td>4.6</td>
<td>6.1</td>
<td>0</td>
<td>4.1</td>
</tr>
<tr>
<td>Total SULFATE sink</td>
<td>6.1</td>
<td>5.2</td>
<td>6.8</td>
<td>1.0</td>
<td>4.6</td>
</tr>
<tr>
<td>SULFATE, Burden (kT S)</td>
<td>31.1</td>
<td>28.6</td>
<td>33.7</td>
<td>84.4</td>
<td>27.0</td>
</tr>
<tr>
<td>Difference relative to CTRL (kT S)</td>
<td>0</td>
<td>-2.5</td>
<td>2.6</td>
<td>53.3</td>
<td>-4.0</td>
</tr>
<tr>
<td>SULFATE, lifetime (day)</td>
<td>4.4</td>
<td>4.7</td>
<td>4.1</td>
<td>12.6</td>
<td>5.3</td>
</tr>
</tbody>
</table>
Table B 1: Particle density and dry size parameters (geometric mean radius r_g, standard deviation σ_g, effective radius r_{eff} and affective variance ν_{eff}) in lognormal dry size distributions for sulfate (SU), organic carbon (OC), black carbon (BC) sea-salt accumulation (SSA) and coarse mode (SSC). The parameters used in this study are in the gray shaded rows. Size parameters based on OPAC (Hess et al. 1998), used in GSFC/GOCART and those suggested by Chin et al. (2002) or Jaeglé et al. (2011) for sea-salt are given for comparison.

<table>
<thead>
<tr>
<th>Density</th>
<th>r_g</th>
<th>σ_g</th>
<th>r_{eff}</th>
<th>ν_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU</td>
<td>1.70</td>
<td>0.069</td>
<td>1.60</td>
<td>0.12 0.25</td>
</tr>
<tr>
<td>OPAC</td>
<td>1.70</td>
<td>0.069</td>
<td>2.03</td>
<td>0.25 0.65</td>
</tr>
<tr>
<td>Chin et al., 2002</td>
<td>1.70</td>
<td>0.069</td>
<td>2.03</td>
<td>0.25 0.65</td>
</tr>
<tr>
<td>GSFC GOCART</td>
<td>1.70</td>
<td>0.069</td>
<td>2.03</td>
<td>0.25 0.65</td>
</tr>
<tr>
<td>OC</td>
<td>1.80</td>
<td>0.064</td>
<td>1.60</td>
<td>0.12 0.25</td>
</tr>
<tr>
<td>OPAC</td>
<td>1.80</td>
<td>0.021</td>
<td>2.24</td>
<td>0.11 0.92</td>
</tr>
<tr>
<td>Chin et al., 2002</td>
<td>1.80</td>
<td>0.021</td>
<td>2.20</td>
<td>0.09 0.86</td>
</tr>
<tr>
<td>GSFC GOCART</td>
<td>1.80</td>
<td>0.021</td>
<td>2.24</td>
<td>0.11 0.92</td>
</tr>
<tr>
<td>BC</td>
<td>1.00</td>
<td>0.020</td>
<td>1.60</td>
<td>0.04 0.25</td>
</tr>
<tr>
<td>OPAC</td>
<td>1.00</td>
<td>0.012</td>
<td>2.00</td>
<td>0.04 0.62</td>
</tr>
<tr>
<td>Chin et al., 2002</td>
<td>1.00</td>
<td>0.012</td>
<td>2.00</td>
<td>0.04 0.62</td>
</tr>
<tr>
<td>GSFC GOCART</td>
<td>1.00</td>
<td>0.012</td>
<td>2.00</td>
<td>0.04 0.62</td>
</tr>
<tr>
<td>SSA</td>
<td>2.20</td>
<td>0.166</td>
<td>1.50</td>
<td>0.25 0.18</td>
</tr>
<tr>
<td>OPAC</td>
<td>2.20</td>
<td>0.209</td>
<td>2.03</td>
<td>0.73 0.65</td>
</tr>
<tr>
<td>Jaeglé et al., 2011</td>
<td>2.20</td>
<td>0.085</td>
<td>1.50</td>
<td>0.13 0.18</td>
</tr>
<tr>
<td>Chin et al., 2002</td>
<td>2.20</td>
<td>0.228</td>
<td>2.03</td>
<td>0.80 0.65</td>
</tr>
<tr>
<td>GSFC GOCART</td>
<td>2.20</td>
<td>0.209</td>
<td>2.03</td>
<td>0.73 0.65</td>
</tr>
<tr>
<td>SSC</td>
<td>2.20</td>
<td>0.464</td>
<td>1.80</td>
<td>1.10 0.41</td>
</tr>
<tr>
<td>OPAC</td>
<td>2.20</td>
<td>1.750</td>
<td>2.03</td>
<td>6.13 0.65</td>
</tr>
<tr>
<td>Jaeglé et al., 2011</td>
<td>2.20</td>
<td>0.401</td>
<td>1.80</td>
<td>0.95 0.41</td>
</tr>
<tr>
<td>Chin et al., 2002</td>
<td>2.20</td>
<td>1.640</td>
<td>2.03</td>
<td>5.73 0.65</td>
</tr>
<tr>
<td>GSFC GOCART</td>
<td>2.20</td>
<td>1.750</td>
<td>2.03</td>
<td>6.13 0.65</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Figure 1: Model domain and 3-year (2006-2008) mean precipitation (mm.d-1) emphasizing the model representation of convergence zones (SPCZ and ITCZ). The main sources of SO2 are symbolized as circles, with size according to emission rates of volcanic degassing (salmon) and anthropogenic sources (gray). SO2 emissions by country and origin are given in Table I. The inset zooms in on the Vanuatu island arc, including the Ambrym volcano characterized by continuous SO2 degassing.

Figure 2: Mean state (01-oct-2005 to 01-oct-2008) of total fractional cloudiness (FC) from (a) Aqua/MODIS and (b) the model; Outgoing Longwave Radiation (OLR) and sea level pressure (SLP) from (c) NOAA (SLP in shades of gray) and NCEP (SLP in white contours) and (d) the model. To highlight regions of heavy convective rainfall, the 6 mm.d-1 isohyet from AMSR-E precipitation and model are displayed in heavy white contour in panels (a) and (b) respectively. From OLR, the 240 W.m-2 contour is used to outline regions of high cloudiness. The main volcanoes from the Melanesian volcanic arc are also symbolized with triangles.

Figure 3: Zonal mean (160°E-174°E) and seasonal mean (2006-2008) hydrological quantities. (a) and (b) total vapor and cloud liquid water (CLW) content from model and AMSRE observations in austral and boreal summer (JFM January-February-March and JAS July-August-September respectively); (c) and (d) daily mean surface precipitation from model and AMSRE observations in JFM and JAS respectively, with partitioning of grid-scale and convective precipitation.

Figure 4: Normalized distribution of simulated surface wind speed compared with measurements from AMSRE and QSCAT (QuikSCAT swath product at 12.5 km; Lefèvre et al. 2010), and surface winds from NCEP/FNL (assimilating QSCAT winds). Number of coincident observations and model data: 91045. These statistics are given for the time period 01-oct-2005 to 01-oct-2008 and regional box [160E:174E ; 21S:11S]

Figure 5: Simulated wind speed dependence of coarse mode sea-salt (SSC) mass concentration using source functions from Gong et al. (2003, Eq.C.1) and Jaeglé et al. (2011, Eq. C.2); error bars given by the standard deviation. Model statistics are constructed using periods of stable wind conditions as defined in Mulcahy et al. (2008), i.e. daily standard deviation of simulated U10 is less than 2 m.s-1; we consider the time period 01-oct-2005 to 01-oct-2008 and regional box [154E:179.5E ; 37S:5S]. For comparison, the empirical law given by the PMEL in-situ observations and the simulated relation given by GEOS-Chem are superimposed in dashed and solid black curves respectively. These relations are given in Jaeglé et al. (2011).

Figure 6: Wind speed dependence of sea-salt optical depth at ?=550nm (including SSA and SSC modes) according to WRF-Chem using source functions from Gong et al. (2003; Eq. C.1; black spots) and Jaeglé et al. (2011; Eq.C.2; gray spots); the error bar is given by the standard deviation. The original Mulcahy et al. (2008) law of optical depth versus wind speed for clean marine aerosols is represented by the black dashed curve, while the dotted curve displays the same law but with minimum value (at U10=0) reduced from 0.06 to 0.02, as suggested by Fan and Toon (2010). The model statistics are constructed using simulated SS AOD for stable wind conditions as defined in Mulcahy et al. (2008): daily standard deviation of simulated U10 must be less than 2 m.s-1. The number of model data considered in the statistics are: 496954; time period 01-oct-2005 to 01-oct-2008; regional box [154E:179.5E ; 37S:5S]
Figure 7: Volcanic SO$_2$ vertical column density (VCD) in mg.m$^{-2}$ averaged between 01-nov-2006 and 01-oct-2008 from the model (main chart) and from OMI (map inset). Only valid OMI VCD (Sect. 2.1) with value above the 0.6 DU sensor detection limit are considered in the averaging process. Simulated SO$_2$ fields use the same OMI data reduction, i.e., data screening coherent with the OMI sensor overpass (Sect. 2.1). In the inset, active Vanuatu volcanoes are indicated. It is in that box that volcanic SO$_2$ mass burden is computed using Eq.1 (see text). Light shaded gray strips show the region used for meridional averaging in Figure 8.

Figure 8: Zonal structure of observed and simulated SO$_2$ VCD across Ambrym. Values are meridional averages in the shaded band shown in Figure 7. Error bars are standard deviations of monthly-mean data.

Figure 9: Observed monthly-mean SO$_2$ burden retrieved from TRL OMI SO$_2$ vertical column density (VCD; solid black curve 1) between 2005 and 2009. Curves 2, 3 and 4 are the simulated top-down SO$_2$ burden used to test retrieval procedures in OMI observations. They reproduce the results of OMI subsampling and sensor detection limit (Curve 2), compared with unaltered model computation on the same subdomain (Curve 3) and on the whole computational domain (Curve 4). The regional 10°x14° box used for SO$_2$ burden computation of curves 1-3 is depicted by the inset in Figure 7 (160°E-174°E - 11°S-21°S). The whole model box used for the Curve 4 is displayed in Figure 1. The simulation does not cover shaded regions and the noticeable Rabaul (PNG) eruptive event is excluded from analysis.

Figure 10: Three-year average (01-oct-2005 to 01-oct-2008) of observed (MODIS/Aqua; panel a) and simulated AOD (panel b) at 550 nm using FlexAOD with CTRL outputs. The contribution (in percent) from Ambrym degassing to total AOD due the formation of high scattering SU aerosols is represented in contours of panel b. AOD at 550nm from the GSFC/GOCART G4P science product is also presented for comparison (panel c). Panel d shows the seasonal cycle using y-t (-Hovmuller-) diagrams for each datasets. Here, the mean zonal AOD between 160°E-174°E is displayed (as indicated with gray lines on each map). Note the simulated AOD is sampled in coincidence with valid MODIS observations. The main active volcanoes are displayed with red symbols.

Figure 11: Aerosol type contribution to total AOD in model and observations. Panel a: model result of 3-year average (01-oct-2005 to 01-oct-2008), zonal-mean AOD between 160°E and 174°E (dashed black curve). Panel b: CALIOP analysis of 5-year average (13-jun-2006 to 26-aug-2011) zonal-mean AOD between 160°E and 174°E (solid black curve). The aerosol type contribution to total AOD derived from the model and CALIOP aerosol subotyping scheme are displayed through cumulative bar plots in panels a and b, respectively. For comparison, MODIS/Aqua AOD is also reported in both panels by a red curve.

Figure 12: Comparison of simulated and observed monthly-mean surface concentrations of non-seasalt sulfate (SU; blue curves) and Methanesulfonic acid (MSA; red curves) at 3 sites monitored by the University of Miami Aerosol Group. Dots and error bars represent simulated means and standard deviations respectively. Observed means and standard deviations are shown with lines and filled curves respectively. Changes of sulfate surface concentrations due to changes in sources of DMS and volcanic sulfur are superimposed. They are given by the CTRL experiment, RUN1 (no Ambrym degassing) and RUN3 (revised parameterization and climatological data for DMS; see Table V). Data, location and recording periods are summarized
in Table VII.

Figure 13: Upper panels (a) and (b) respectively provide surface concentration and wet/dry deposition of SU aerosols, with contribution from Ambrym degassing in contours. Panel (c): sources and sinks of SU associated with Ambrym degassing along the SPCZ using cross-box averaged values in the box drawn on panel (b). Panel (d): mixing ratio of SU associated with Ambrym degassing and model horizontal wind vectors at 750 mb. Two regions defined in the budget analysis are displayed in blue, i.e., a deep convective region (Solomon Sea) and a more stable region in the southeastern tip of the SPCZ.

Figure 14: Vertical profiles of box averaged SO2 and SU concentrations over the deep convective region in the Solomon Sea (black lines) and the southeastern SPCZ region (red lines). The exact locations are given in Figure 13.d). Time averaging is done for the period 01-oct-2006 to 01-oct-2008.

Figure 15: Vertical profiles of box averaged SU budgets over (a) the deep convective region in the Solomon Sea and (b) the southeastern SPCZ region (exact locations in Figure 13.d). Time averaging is done for the period 01-oct-2006 to 01-oct-2008.

Figure 16: Zonal and time mean AOD between 160°E and 174°E and 01-oct-2005 and 01-oct-2008, computed offline using FlexAOD with outputs from six experiments detailed in Table V. The observed MODIS AOD (red line) is given for comparison. Note that all simulated AODs are subsampled in coincidence with valid MODIS observations.

Figure B 1: Mass extinction efficiency β at wavelength 550 nm as a function of RH for water-soluble aerosols (sulfate, sea-salt accumulation and coarse mode). β-RH relations using the original particle-size distributions (PSDs) of GSFC/GOCART P4G0 are displayed with dotted curves. Solid curves represent β-RH relations with new size parameters applied in our setup of GOCART/WRF-Chem (see Table B 1 for the size parameters).

Figure C 1: Diagram of the meteorology-chemistry modeling system composed of WRF-Chem V3.3., coupled online to GOCART for aerosol fate and transport, and offline to FlexAOD for aerosol optical properties. The ring symbolizes the exchange of arrays with chemical species (including aerosols and gases). New or revised physical and chemistry modules involved in aerosol processes are identified with cross hashing (see text for details).

Figure C 2: Vertical profiles of time-averaged (oct-2006 to oct-2008) updraft mass fluxes given by the deep convection scheme (Zhang and McFarlane, 1995) and shallow convection scheme (Park and Bretherton, 2009) used in this study. Left and right panels present the deep convection and southeastern SPCZ regions, respectively, defined in Figure 13.d.
Figure 1: Model domain and 3-year (2006-2008) mean precipitation (mm.d$^{-1}$) emphasizing the model representation of convergence zones (SPCZ and ITCZ). The main sources of SO$_2$ are symbolized as circles, with size according to emission rates of volcanic degassing (salmon) and anthropogenic sources (gray). SO$_2$ emissions by country and origin are given in Table I. The inset zooms in on the Vanuatu island arc, including the Ambrym volcano characterized by continuous SO$_2$ degassing.
Figure 2: Mean state (01-oct-2005 to 01-oct-2008) of total fractional cloudiness (FC) from (a) Aqua/MODIS and (b) the model; Outgoing Longwave Radiation (OLR) and sea level pressure (SLP) from (c) NOAA (SLP in shades of gray) and NCEP (SLP in white contours) and (d) the model. To highlight regions of heavy convective rainfall, the 6 mm.d\(^{-1}\) isohyet from AMSRE precipitation and model are displayed in heavy white contour in panels (a) and (b) respectively. From OLR, the 240 W.m\(^{-2}\) contour is used to outline regions of high cloudiness. The main volcanoes from the Melanesian volcanic arc are also symbolized with triangles.
Figure 3: Zonal mean (160°E-174°E) and seasonal mean (2006-2008) hydrological quantities. (a) and (b) total vapor and cloud liquid water (CLW) content from model and AMSRE observations in austral and boreal summer (JFM January-February-March and JAS July-August-September respectively); (c) and (d) daily mean surface precipitation from model and AMSRE observations in JFM and JAS respectively, with partitioning of grid-scale and convective precipitation.
Figure 4: Normalized distribution of simulated surface wind speed compared with measurements from AMSRE and QSCAT (QuikSCAT swath product at 12.5 km; Lefèvre et al. 2010), and surface winds from NCEP/FNL (assimilating QSCAT winds). Number of coincident observations and model data: 91045. These statistics are given for the time period 01-oct-2005 to 01-oct-2008 and regional box [160E:174E; 21S:11S]
Figure 5: Simulated wind speed dependence of coarse mode sea-salt (SSC) mass concentration using source functions from Gong et al. (2003, Eq.C.1) and Jaeglé et al. (2011, Eq. C.2); error bars given by the standard deviation. Model statistics are constructed using periods of stable wind conditions as defined in Mulcahy et al. (2008), i.e. daily standard deviation of simulated U_{10} is less than 2 m.s^{-1}; we consider the time period 01-oct-2005 to 01-oct-2008 and regional box [154E:179.5E ; 37S:5S]. For comparison, the empirical law given by the PMEL in-situ observations and the simulated relation given by GEOS-Chem are superimposed in dashed and solid black curves respectively. These relations are given in Jaegle et al. (2011).
Figure 6: Wind speed dependence of sea-salt optical depth at $\lambda=550\text{nm}$ (including SSA and SSC modes) according to WRF-Chem using source functions from Gong et al. (2003; Eq. C.1; black spots) and Jaeglé et al. (2011; Eq.C.2; gray spots); the error bar is given by the standard deviation. The original Mulcahy et al. (2008) law of optical depth versus wind speed for clean marine aerosols is represented by the black dashed curve, while the dotted curve displays the same law but with minimum value (at $U_{10}=0$) reduced from 0.06 to 0.02, as suggested by Fan and Toon (2010). The model statistics are constructed using simulated SS AOD for stable wind conditions as defined in Mulcahy et al. (2008): daily standard deviation of simulated U_{10} must be less than 2 m.s$^{-1}$. The number of model data considered in the statistics are: 496954; time period 01-oct-2005 to 01-oct-2008; regional box [154E:179.5E ; 37S:5S]
Figure 7: Volcanic SO$_2$ vertical column density (VCD) in mg.m$^{-2}$ averaged between 01-nov-2006 and 01-oct-2008 from the model (main chart) and from OMI (map inset). Only valid OMI VCD (Sect. 2.1) with value above the 0.6 DU sensor detection limit are considered in the averaging process. Simulated SO$_2$ fields use the same OMI data reduction, i.e., data screening coherent with the OMI sensor overpass (Sect. 2.1). In the inset, active Vanuatu volcanoes are indicated. It is in that box that volcanic SO$_2$ mass burden is computed using Eq.1 (see text). Light shaded gray strips show the region used for meridional averaging in Figure 8.
Figure 8: Zonal structure of observed and simulated SO\textsubscript{2} VCD across Ambrym. Values are meridional averages in the shaded band shown in Figure 7. Error bars are standard deviations of monthly-mean data.
Figure 9: Observed monthly-mean SO₂ burden retrieved from TRL OMI SO₂ vertical column density (VCD; solid black curve 1) between 2005 and 2009. Curves 2, 3 and 4 are the simulated top-down SO₂ burden used to test retrieval procedures in OMI observations. They reproduce the results of OMI subsampling and sensor detection limit (Curve 2), compared with unaltered model computation on the same subdomain (Curve 3) and on the whole computational domain (Curve 4). The regional 10°x14° box used for SO₂ burden computation of curves 1-3 is depicted by the inset in Figure 7 (160°E-174°E – 11°S-21°S). The whole model box used for the Curve 4 is displayed in Figure 1. The simulation does not cover shaded regions and the noticeable Rabaul (PNG) eruptive event is excluded from analysis.
Figure 10: Three-year average (01-oct-2005 to 01-oct-2008) of observed (MODIS/Aqua; panel a) and simulated AOD (panel b) at 550 nm using FlexAOD with CTRL outputs. The contribution (in percent) from Ambrym degassing to total AOD due the formation of high scattering SU aerosols is represented in contours of panel b. AOD at 550nm from the GSFC/GOCART G4P0 science product is also presented for comparison (panel c). Panel d shows the seasonal cycle using y-t (-Hovmuller-) diagrams for each datasets. Here, the mean zonal AOD between 160°E-174°E is displayed (as indicated with gray lines on each map). Note the simulated AOD is sampled in coincidence with valid MODIS observations. The main active volcanoes are displayed with red symbols.
(a) Aerosol type contribution to total model AOD

(b) Aerosol type contribution to total CALIOP AOD
Figure 11: Aerosol type contribution to total AOD in model and observations. Panel a: model result of 3-year average (01-oct-2005 to 01-oct-2008), zonal-mean AOD between 160°E and 174°E (dashed black curve). Panel b: CALIOP analysis of 5-year average (13-jun-2006 to 26-aug-2011) zonal-mean AOD between 160°E and 174°E (solid black curve). The aerosol type contribution to total AOD derived from the model and CALIOP aerosol sub-typing scheme are displayed through cumulative bar plots in panels a and b, respectively. For comparison, MODIS/Aqua AOD is also reported in both panels by a red curve.
Figure 12: Comparison of simulated and observed monthly-mean surface concentrations of non-seasalt sulfate (SU; blue curves) and Methanesulfonic acid (MSA; red curves) at 3 sites monitored by the University of Miami Aerosol Group. Dots and error bars represent simulated means and standard deviations respectively. Observed means and standard deviations are shown with lines and filled curves respectively. Changes of sulfate surface concentrations due to changes in sources of DMS and volcanic sulfur are superimposed. They are given by the CTRL experiment, RUN1 (no Ambrym degassing) and RUN3 (revised parameterization and climatological data for DMS; see Table V). Data, location and recording periods are summarized in Table VII.
(a) Sulfate surface concentration

(b) Sulfate surface deposition

(c) In-air and in-cloud formation and dry/wet deposition of sulfate associated with Ambrym degassing

(d) Sulfate mixing ratio associated with Ambrym degassing at pressure level 750 mb
Figure 13: Upper panels (a) and (b) respectively provide surface concentration and wet/dry deposition of SU aerosols, with contribution from Ambrym degassing in contours. Panel (c): sources and sinks of SU associated with Ambrym degassing along the SPCZ using cross-box averaged values in the box drawn on panel (b). Panel (d): mixing ratio of SU associated with Ambrym degassing and model horizontal wind vectors at 750 mb. Two regions defined in the budget analysis are displayed in blue, i.e., a deep convective region (Solomon Sea) and a more stable region in the southeastern tip of the SPCZ.
Figure 14: Vertical profiles of box averaged SO$_2$ and SU concentrations over the deep convective region in the Solomon Sea (black lines) and the southeastern SPCZ region (red lines). The exact locations are given in Figure 13.d). Time averaging is done for the period 01-oct-2006 to 01-oct-2008.
Figure 15: Vertical profiles of box averaged SU budgets over (a) the deep convective region in the Solomon Sea and (b) the southeastern SPCZ region (exact locations in Figure 13.d). Time averaging is done for the period 01-oct-2006 to 01-oct-2008.
Figure 16: zonal and time mean AOD between 160°E and 174°E and 01-oct-2005 and 01-oct-2008, computed offline using FlexAOD with outputs from six experiments detailed in Table V. The observed MODIS AOD (red line) is given for comparison. Note that all simulated AODs are subsampled in coincidence with valid MODIS observations.
Figure B 1: Mass extinction efficiency β at wavelength 550 nm as a function of RH for water-soluble aerosols (sulfate, sea-salt accumulation and coarse mode). β-RH relations using the original particle-size distributions (PSDs) of GSFC/GOCART P4G0 are displayed with dotted curves. Solid curves represent β-RH relations with new size parameters applied in our setup of GOCART/WRF-Chem (see Table B 1 for the size parameters).
Figure C 1: Diagram of the meteorology-chemistry modeling system composed of WRF-Chem V3.3, coupled online to GOCART for aerosol fate and transport, and offline to FlexAOD for aerosol optical properties. The ring symbolizes the exchange of arrays with chemical species (including aerosols and gases). New or revised physical and chemistry modules involved in aerosol processes are identified with cross hashing (see text for details).
Figure C 2: Vertical profiles of time-averaged (oct-2006 to oct-2008) updraft mass fluxes given by the deep convection scheme (Zhang and McFarlane, 1995) and shallow convection scheme (Park and Bretherton, 2009) used in this study. Left and right panels present the deep convection and southeastern SPCZ regions, respectively, defined in Figure 13.d.
Graphical abstract
Highlights

- A cross-examination of numerical model and satellite observations is presented.
- OMI SO2 fluxes are reduced by 50%. Sulfur aerosols are misclassified by CALIOP.
- Processes by which volcanic emissions affect aerosol extinction are analyzed.
- Re-suspension from droplets may be an important source of non-sea salt sulfur aerosols.
- Tropical volcanic degassing can provide long-lived sulfur stratospheric aerosols.