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Abstract 30 

Single scatter albedo (SSA) is a key parameter in radiative transport models for estimating 31 

aerosol direct radiative forcing (DRF) and is also a major contributor to DRF uncertainty. 32 

We investigate the sensitivity of  SSA calculations to physical input parameters (e.g., 33 

mixing state, size distribution, density, and refractive index of  aerosols) associated with 34 

absorbing aerosols (e.g., black carbon [BC], brown carbon [BrC], and soil dust). We 35 

attempted to estimate global aerosol SSAs using the 3-D global chemical transport model 36 

(GEOS-Chem) and a post-processing tool of  aerosol optical properties (FlexAOD) and 37 

evaluated the model by comparing it with observed values. The model reproduces the 38 

observed variability of  both the surface aerosol concentrations and aerosol optical depth 39 

(AOD) obtained from the Surface Particulate Matter Network (SPARTAN), the global 40 

Aerosol Mass Spectrometer (AMS), and the Aerosol Robotic Network (AERONET). 41 

Our sensitivity tests show that the physical input parameters, which are not as well 42 

understood as aerosol mass concentrations, can lead to large uncertainties in global SSA 43 

values. We find that BC mixing state, BrC, and a dust size distribution have significant 44 

impacts on the global SSA calculation. Their combined use can reduce aerosol SSA bias 45 

in the model by 43% at 440 nm, compared to observations. We also find that the direct 46 

radiative effect (DRE) of  global aerosols increases by 10% (from -2.62 W m-2 to -2.36 W 47 

m-2) when the SSA bias is corrected. 48 

 49 

 50 

 51 
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1. Introduction 56 

Aerosol optical depth (AOD), asymmetry parameter, and single scattering albedo 57 

(SSA) are key input variables required to calculate the aerosol direct radiative forcing 58 

(DRF) (Jacobson, 2001). In particular, SSA is an essential parameter for estimating DRF 59 

because even small changes in SSA cause a significant change in DRF, and SSA may also 60 

determine the sign of  DRF. For example, if  SSA changes from 0.8 to 0.9, DRF may 61 

change from positive (warming effect) to negative (cooling effect) (Hansen et al., 1997). 62 

In general, the calculation of  SSA relies on the Mie theory, which is widely used in 63 

atmospheric chemistry models due to its simplicity, computational efficiency, and ease of  64 

application in the radiative transfer model. The Mie theory for SSA calculations requires 65 

input parameters such as aerosol size distributions, density, hygroscopic growth factors, 66 

and refractive index. However, since aerosol characteristics vary greatly depending on 67 

mixing state, aging, source, and region, SSA estimation using models has high 68 

uncertainties. Although the development of  measurement techniques and the use of  69 

aerosol observations can reduce such uncertainties, it is still challenging to determine the 70 

best combination of  physical parameters for aerosol simulation models. Also, physical 71 

assumptions significantly affect SSA calculations. For example, a global modeling study 72 

reported similar SSA values between model and aerosol robot network (AERONET) 73 

observation (Chin et al., 2009), whereas others suggest a positive bias in the model SSA 74 

(Jo et al., 2016; Myhre et al., 2009). The difference in their findings is mainly due to 75 

different black carbon (BC) densities and emissions, i.e., the low SSA bias presented by 76 

Chin et al. (2009) is due to the relatively low BC density and high BC emissions. Their BC 77 

density of  1.0 g cm-3 is the lowest in the literature, and the global BC emission of  10.2 Tg 78 

C yr-1 was also 50% higher than that of  Jo et al. (2016). The differences in aerosol 79 

emissions and physical parameters, as in the example above, make it challenging to 80 

identify the significant factors that affect SSA calculation.  81 

SSA depends on the mixing state, particle shape, wavelength, and mass ratio of  82 

non-black carbon to black carbon (Liu et al., 2017). Therefore, selecting the best 83 

parameters for BC in the Mie calculation is a more important issue than other aerosols, 84 

because BC is an aggregate composed of  several small spherical particles. However, the 85 

AeroCom model intercomparison project reveals significant differences in BC 86 
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information: refractive index (1.75-0.44i − 2.0-1.0i), density (1.0 − 2.0 g cm-3), and 87 

particle size (0.020 − 0.852 µm) (Koch et al., 2009).  88 

Although BC predominantly contributes to aerosol absorption, soil dust is also a 89 

significant contributor because the total global burden of  soil dust is much higher than 90 

other aerosols (Yang et al., 2009). Despite its importance, the effects of  dust size 91 

distribution on SSA in global models were poorly evaluated (Kok et al., 2017). Also, 92 

recent studies have focused on the absorption of  brown carbon (BrC) (Jo et al., 2016; 93 

Park et al., 2010). BrC plays an essential role in SSA calculations, but few models take into 94 

account the absorption of  BrC. 95 

In this study, we focus on four major factors (e.g., aerosols mixing state for the Mie 96 

scattering calculations, size distribution and refractive index of  BC, size distribution of  97 

soil dust, and BrC) that may influence SSA estimation. First, we extensively evaluate the 98 

aerosol mass concentrations in surface air and optical values using global aerosol 99 

observation network data, namely the Surface Particulate Matter Network (SPARTAN) 100 

(Snider et al., 2015), the global Aerosol Mass Spectrometer (AMS) (Zhang et al., 2007), 101 

and AERONET, as seen in Figs. S1, S2, and S3, respectively. We perform sensitivity 102 

simulations to investigate their effects on SSA. Finally, we use the best model result to 103 

estimate the global aerosol direct radiative effect (DRE) and provide implications for the 104 

climate effects of  current general circulation models (GCMs). 105 

 106 

 107 

2. Global model and data 108 

2.1. GEOS-Chem 109 

We used a 3-D global chemical transport model (GEOS-Chem; version 10-01-01) 110 

with the Modern Era Retrospective-analysis for Research and Applications (MERRA) 111 

reanalysis meteorological fields. MERRA provides meteorological data such as wind, 112 

temperature, planetary boundary layer height, humidity, and other variables on a 113 

horizontal scale of  0.5° × 0.667°. Although the details of  the spatial structure are 114 

reduced, we used re-grided data with a horizontal scale of  2° × 2.5° to improve the 115 

computational efficiency of  the global model simulation. 116 

The anthropogenic emissions of  OC, BC, SO2, NOX, NH3, and CO used 117 
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hemispherical air pollution (HTAP) v2 inventory, which includes a ship, energy, industrial, 118 

transportation, residential, and agricultural sector data (Janssens-Maenhout et al., 2015). 119 

HTAP v2 has a horizontal resolution of  0.1° × 0.1°, and the reference year was taken as 120 

2010. We applied a diurnal variation of  NH3 to reduce the overestimation of  nitrate 121 

aerosol in the model (Zhu et al., 2015). Aromatics of  benzene, toluene, and xylenes used 122 

the Reanalysis of  the Tropospheric chemical composition (RETRO) emission inventory 123 

(Schultz et al., 2007). The biogenic VOC emission follows the Model of  Emissions of  124 

Gases and Aerosols from Nature (MEGAN) v2.1 (Guenther et al., 2012). The biogenic 125 

VOC emission is calculated based on the canopy environment, soil moisture, emission 126 

factors, and leafage. The biomass burning emission is estimated using the Global Fire 127 

Emission Database Version 4 (GFEDv4) inventory with monthly time resolution and a 128 

spatial resolution of  0.25° × 0.25° (Giglio et al., 2013). Table 1 summarizes the global 129 

anthropogenic and natural emissions used in this study.  130 

We performed fully-coupled Ox-NOx-hydrocarbon-aerosol simulations. The model 131 

considers both anthropogenic aerosols such as BC, OC, ammonium, sulfate, and nitrate, 132 

and natural aerosols of  soil dust and sea salt. The generation of  BC and OC is based on 133 

the methods described by Park et al. (2003), and the transition from hydrophobic to 134 

hydrophilic tracers assumes an e-folding time scale of  1.15 days. Secondary organic 135 

aerosol (SOA) follows the scheme proposed by Pye et al. (2010), which regards 136 

hydrocarbons of  a monoterpene, sesquiterpene, isoprene, and aromatic compounds as 137 

NOx-dependent yields. More detailed information on SOA generation is described in Pye 138 

et al. (2010). 139 

We calculated the BrC concentration in both the primary and secondary sources 140 

using the calculated 3-D global BrC to OC ratio produced by Jo et al. (2016). The mean 141 

ratio of  vertically integrated BrC to OC was 0.19 on the global scale but can vary locally 142 

(Jo et al., 2016). They calculated the global BrC to OC ratios of  biofuel and biomass 143 

burning emissions from the relationship between the absorption Angstrom exponent and 144 

the modified combustion efficiency. We also applied the refractive indices of  BrC 145 

proposed by Jo et al. (2016) to estimate BrC absorption. A detailed method and global 146 

distribution of  BrC can be found in Jo et al. (2016). 147 

Secondary inorganic aerosols such as sulfate, nitrate, and ammonium are calculated 148 
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using ISORROPIA II, which considers thermodynamic equilibrium for HNO3-H2SO4-149 

NH3-H2O (Fountoukis and Nenes, 2007). The model used the dust entrainment and 150 

deposition (DEAD) scheme proposed by Zender et al. (2003) for soil dust generation, 151 

which follows the source function from the GOCART model (Chin et al., 2002; Fairlie et 152 

al., 2007). The sea salt particles are produced as a function of  the sea surface temperature 153 

with 10 m wind speed (Alexander et al., 2005; Gong, 2003). 154 

Secondary inorganic and carbonaceous aerosols are simulated using a bulk aerosol 155 

technique that only computes mass concentrations. Number concentrations are calculated 156 

using the constant density of  each aerosol. Size distributions assume a log-normal 157 

distribution and are calculated using the geometric mean radius and standard deviation of  158 

each aerosol (Table 2). On the other hand, sea salt and dust aerosols are divided into two 159 

bins and four bins, respectively, depending on the particle size. 160 

 161 

2.2. Aerosol data 162 

We evaluate the model by using observations of  surface aerosol mass 163 

concentrations, aerosol chemical compositions, and aerosol optical properties from the 164 

SPARTAN, the AMS dataset, and the AERONET, respectively. The SPARTAN is a 165 

global network for observing particulate matter mass concentrations and optical 166 

properties designed to validate satellite remote sensing estimates for application to health 167 

impact studies and risk assessments and to reduce the current gap in knowledge of  global 168 

aerosol concentrations. The SPARTAN sites are primarily located in populated areas and 169 

are deployed in conjunction with the AERONET, a ground-based optical network that 170 

measures AOD. Each site has a filter sampler that measures the concentration of  PM2.5 171 

and PM10, and a three-wavelength integrating nephelometer that measures the light 172 

scattering of  the aerosol. The SPARTAN filters also measure water-soluble ions, OC and 173 

elemental carbon, and trace elements. 174 

The global AMS dataset provides aerosol concentrations observed from the ground 175 

between 2000 and 2008, with multiple sites located primarily in the Northern 176 

Hemisphere classified as urban, downwind, and rural regions. Spracklen et al. (2011) 177 

compiled ten additional datasets into the AMS observations compiled by Zhang et al. 178 

(2007), providing a total of  47 observations at 34 separate locations. Each observation is 179 
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sampled continuously from the ground and is usually an average of  one month. The 180 

AMS measures the specified PM mass concentrations and size distributions through the 181 

inlet system that generates the particle beam, the particle sizing section, and the particle 182 

composition analysis section. The AMS measurement technique is described in detail in 183 

Canagaratna et al. (2007). 184 

The AERONET is a ground-based remote sensing aerosol network established in 185 

the 1990s and is a well-developed facility for passive aerosol measurement (Holben et al., 186 

1998). The AERONET consists of  the same sunphotometers at hundreds of  sites 187 

globally and provides time-series data with a very high time resolution over the years. The 188 

AERONET measures aerosol extinctions, typically every 15 minutes at eight wavelengths 189 

(340, 380, 440, 500, 675, 870, 1020, and 1640 nm) and provides AOD, SSA, precipitable 190 

water vapor, aerosol size distribution, and refractive index. It is noted that from 2008 to 191 

2010, only wavelengths of  440, 675, 870, and 1020 nm were retrieved for SSA. Version 3 192 

data are available at three levels: level 1, 1.5, and 2, which present raw data, cloud-193 

screened and quality controlled data, and quality-assured data, respectively. This study 194 

uses level 2 data to evaluate the model results. 195 

 196 

 197 

3. Estimation of  aerosol optical properties 198 

3.1. FlexAOD 199 

We calculated the aerosol optical properties, including AOD, SSA, and asymmetric 200 

parameters using the Flexible Aerosol Optical Depth (FlexAOD), which is a post-201 

processing tool for aerosol optical property calculations in GEOS-Chem (Curci et al., 202 

2019; Curci et al., 2015). FlexAOD calculates the aerosol optical properties using Mie 203 

theory with input data, including refractive indices, size distributions, hygroscopic growth 204 

factors, and particle density for each aerosol species. All aerosol species are assumed to 205 

be distributed as a lognormal function, except for the dust with gamma distribution used. 206 

FlexAOD can be used to calculate aerosol optical properties in various mixed states. 207 

Here, we considered one external and two internal aerosol mixing states for the Mie 208 

calculations. In the case of  external mixing, each aerosol was assumed to be formed by a 209 

single chemical species. In the case of  internal mixing, we used two internal mixing 210 
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representations: homogeneous and core-shell. The homogeneous internal mixing 211 

assumed that all aerosols were well mixed, and the core-shell internal mixing assumed 212 

that a concentric well mixed soluble shell coated an insoluble well-mixed core. For the 213 

calculation of  the optical properties in the internal mixing case, the size distributions 214 

were geometrically divided into 100 bins. Then, the mass of  each aerosol species was 215 

summed in each bin, in order to ensure mass conservation and consistency with external 216 

mixing calculation. In each bin, the refractive index was calculated as a volume-weighted 217 

average, considering the hygroscopic growth effect of  each aerosol species, in each bin. 218 

In the case of  core-shell, the sum of  mass and refractive index average is done separately 219 

for the core and the shell. This way, the core mass fraction is allowed to vary as a 220 

function of  particle size, according to the ratio of  core/shell volume in each size bin 221 

(Curci et al., 2019, Fig. 4 therein). 222 

For homogeneous internal mixing, Mishchenko et al. (1999) code was used to 223 

calculate Mie efficiency (scattering, absorption, and extinction) in each bin. In the case of  224 

core-shell internal mixing, the same averaging procedure was applied to the core and the 225 

shell separately, and the volume ratio of  the core and the shell of  the stratified spheres 226 

were calculated using the Toon and Ackerman (1981) code. The hydrophobic OC 227 

constitutes the core, and the hydrophilic OC assumes a shell to calculate the internal 228 

mixing. BC is assumed to be the core regardless of  hygroscopicity, and inorganic, dust, 229 

and sea salt aerosols are assumed to be the shell. Details of  the calculation of  aerosol 230 

optical properties with different mixing states are described in Curci et al. (2015, 2019). 231 

Table 2 summarizes the input values used in FlexAOD. To improve the SSA 232 

calculation in this study, we updated the input values as follows: the geometric standard 233 

deviations of  sulfate, nitrate, ammonium, BC, and OC were changed from 2.0 to 1.6 234 

based on the values measured by an optical particle counter (Drury et al., 2010). The 235 

hygroscopic growth factors (HGFs) and refractive indices of  sulfate, nitrate, and 236 

ammonium aerosols follow the OPAC database. The HGFs in OC are updated to 1.35 237 

when RH is 95%, based on field and laboratory experiments (Jimenez et al., 2009). The 238 

geometric mean radius and density for individual spherules of  aggregated BC increased 239 

from 0.012 µm to 0.020 µm and from 1.0 g cm-3 to 1.8 g cm-3, respectively (Bond and 240 

Bergstrom, 2006; Hess et al., 1998). The changes in aerosol absorption from the changes 241 
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in BC input values will be discussed in the next section. In this study, wavelength-242 

dependent refractive indices are used, and the values of  440 nm and 870 nm used for 243 

model verification are also listed in Table 2. 244 

 245 

3.2. Characteristics of  BC 246 

Since BC generally has a diverse geometrical size, it is not easy to choose the 247 

appropriate BC radius for Mie calculations (Koch et al., 2009). Here, we assumed that 248 

individual primary spherules of  aggregated BC have a spherical shape. We then 249 

investigated the effects of  the geometric mean radius (rg) and geometric standard 250 

deviation (σ) on the sensitivity of  the BC absorption to select the appropriate BC radius 251 

for SSA calculation. We calculated the sensitivity of  absorbing AOD (AAOD) for rg of  252 

1–200 nm, for σ of  1.2, 1.6, 2.0, and for BC burden of  0.25 mg m-2 (Fig. 1a). The blue 253 

rectangle and red star symbols represent the AAOD values calculated by the size 254 

distributions of  BC for GEOS-Chem and OPAC, respectively. However, these two size 255 

distributions have a very similar AAOD (<1% difference) due to the combined effect of  256 

a decrease in rg and an increase in σ. 257 

Fig. 1b shows the BC AAOD calculated as a function of  the refractive indices of  258 

real and imaginary parts. The BC AAOD increased with the decrease of  the real part and 259 

an increase of  the imaginary part. The blue triangle and red star represent the BC AAOD 260 

values using the refractive index of  Bond and Bergstrom (2006) (1.95 – 0.79i) and OPAC 261 

(1.74 – 0.44i), respectively. BC AAOD using the refractive index of  OPAC was 33% 262 

lower than that of  Bond and Bergstrom (2006). Similar to our results, the BC AAOD 263 

with a refractive index of  1.74 – 0.44i was 29% lower than that of  1.95 – 0.79i in the 264 

ECHAM5-HAM model (Stier et al., 2007). 265 

 266 

3.3. FlexAOD simulation 267 

The sensitivity experiments of  FlexAOD for changing input parameters are 268 

performed using aerosol mass concentrations from GEOS-Chem. Here we focused on 269 

BC aerosol, which is known to have high absorption. Table 3 shows the lists of  the 270 

sensitivity experiment for changing input parameters related to BC. For example, GEOS 271 

represents the FlexAOD simulation with input parameter values used in GEOS-Chem 272 
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v10-01-01. OPAC uses the values from the OPAC database. BB, BBR, and BBHR cases 273 

use the same refractive index of  1.95 – 0.79i, but the geometric radius of  BC is different. 274 

The size of  0.065 µm (BBR) was based on Bond et al. (2013), and an additional 275 

geometric mean radius of  0.1 µm (BBHR) was also investigated (Koch et al., 2009).  276 

We also considered the different mixing states, brown carbon, and dust size 277 

distributions and added tag names to distinguish them. As previously mentioned, we 278 

included three aerosol mixing states: external, homogeneous internal, and core-shell 279 

internal with the tags "_EX", "_HI", "_CS", respectively. We added the "_BR" tag if  it 280 

contains BrC absorption. We also conducted a sensitivity test by changing soil dust size 281 

distributions presented from a previous study (Zhang et al., 2013). However, the 282 

sensitivity simulation of  the dust size distribution applies only to the calculation of  the 283 

dust optical properties. Dry and wet depositions may alter the mass concentration in the 284 

sub-micron size, but the effects on total dust mass concentrations are negligible (Ridley et 285 

al., 2012). The "_DI" tag applies to the change in dust size distributions proposed by 286 

Zhang et al. (2013). For example, "GEOS_BR_DI_HI" means that input parameters 287 

from GEOS-Chem, BrC, soil dust size distributions from Zhang et al. (2013), and 288 

homogeneous internal mixing assumptions are used. Detailed descriptions of  the 289 

sensitivity experiment are summarized in Table A1. 290 

 291 

 292 

4. Global model evaluation 293 

4.1. Aerosol mass concentrations 294 

We evaluated global aerosol concentrations using AMS and SPARTAN. Since the 295 

observations were conducted over different periods (AMS: 2000–2008, SPARTAN: 296 

2013–2015), we focused only on the period of  2008-2010. Therefore, our model is 297 

evaluated only with the observed monthly mean values and without considering the year-298 

to-year variability. 299 

Fig. 2 compares the monthly mean concentrations of  simulated sulfate, nitrate, 300 

ammonium, and OC aerosols with AMS surface observations. The statistical values 301 

related to the model evaluations are also shown in Table 4. We found that the model well 302 

reproduces the observed sulfate, nitrate, and ammonium concentrations with regression 303 
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slopes of  0.69–0.84 and correlation coefficients of  0.62–0.78. However, the simulated 304 

OC concentration shows a relatively high RMSE (4.77 µg m-3) and low correlation 305 

coefficient (0.36). This result is consistent with AMS observations reported in previous 306 

studies (Jo et al., 2013; Yu, 2011). They suggested that the negative bias of  OC is mainly 307 

due to poor SOA simulations, which was also presented in the AeroCom intercomparison 308 

project (Tsigaridis et al., 2014). 309 

Fig. 3 and Table 4 show a comparison between the model and SPARTAN 310 

observations. The results are worse than those with AMS observations, especially for 311 

nitrate aerosol, because the observations were collected in different periods. Since both 312 

NOx emissions and nitrate concentrations in the United States and Europe show 313 

decreasing trends, observations from these two different periods are likely to have 314 

different levels of  nitrate concentration. Nitrate overestimation appears mainly in the 315 

United States (7 points above the 10:1 line) and South East Asia (7 points above the 10:1 316 

line) and is consistent with previous studies in East Asia (Wang et al., 2013), South Asia 317 

(Gu et al., 2016), and the United States (Schiferl et al., 2014; Zhu et al., 2013) using 318 

GEOS-Chem model. Although there are efforts to reduce the nitrate overestimation in 319 

the model (e.g., boundary layer height, dry deposition velocity, and the reaction rate of  320 

nitric acid), this issue is still not fully-resolved (Zhu et al., 2013). Recent AeroCom phase 321 

III study also suggests that nitrate has enormous diversity in inorganic aerosol 322 

simulations (Bian et al., 2017). However, finding a solution to the overestimation of  323 

nitrate is beyond the scope of  this study. 324 

Simulated BC shows a regression slope of  0.94, which is a relatively better result 325 

compared to nitrate. However, the BC concentration is underestimated by 37%, mainly in 326 

Manila (10 points below the 1:10 line). The errors can be attributed to a poor 327 

geographical representation of  the model because this site is mostly assigned to the high 328 

ratio (>75%) of  the ocean in the model grid box (Fig. S4). The model spatial resolution 329 

(2° × 2.5°) is too coarse to capture the local sources, especially the island. This 330 

discrepancy is improved by using the finer spatial resolution (e.g., 0.25° × 0.3125°) of  the 331 

GEOS-Chem model (Chen et al., 2009; Yu et al., 2016). 332 

We estimated the observed soil dust concentration according to the SPARTAN 333 

speciation proposed by Snider et al. (2016). They estimated the soil dust mass by 334 
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multiplying the [Mg + Fe + Al] concentration by 10, based on the element composition 335 

of  soil dust proposed by Wang (2015). Although it is straightforward, we find that the 336 

soil dust concentration derived from this method is similar to Malm et al. (1994) based on 337 

the observed dust concentration (regression slope 1.0, R = 0.98). The simulated PM2.5 338 

concentrations are similar to the observations but with slightly lower bias (24% lower 339 

mean concentration, R = 0.76). The model well reproduces the observed aerosol 340 

concentrations, but slightly underestimates or overestimates depending on species and 341 

sites. Therefore, we excluded some observations with high errors by some criteria 342 

described in the next section. 343 

 344 

 345 

4.2. SSA and AOD 346 

As described above, the model well captured the observed PM2.5 concentrations 347 

(R=0.76). However, the results can be affected by the overestimation of  nitrate and the 348 

underestimation of  OC. Therefore, to increase the reliability of  the model for SSA and 349 

AOD, we removed the AERONET sites that do not meet the following criteria: (1) The 350 

difference between the monthly mean aerosol concentration of  the model and the 351 

observations should be less than a factor of  two at surface networks (AMS and 352 

SPARTAN); and (2) AMS (or SPARTAN) and AERONET sites must be on the same or 353 

adjacent model grid. This will improve the reliability of  the results derived from the 354 

model by using more similar model values for observation, although the number of  data 355 

used is reduced. 356 

Fig. 4a shows the observed and simulated AOD at 500 nm for the baseline case 357 

(GEOS_EX). The AOD statistics between the observation and the model is similar to 358 

the result of  PM2.5. The correlation coefficients for AOD and PM2.5 are both 0.76; the 359 

slopes are 0.68 and 0.70; and the normalized mean bias (NMB) values are -20% and -24%, 360 

respectively. From these results, we concluded that there are no significant errors in 361 

simulated aerosol concentration (GEOS-Chem) and aerosol optical characterization 362 

(FlexAOD). When using the filtering data satisfying the above criteria, the model shows 363 

improved statistics for the observed values at the AERONET sites with the correlation 364 

coefficient increasing to 0.82, and NMB decreasing to -10% (Fig. 4b). 365 
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Figs. 5a and 5b show the SSA comparison between the observation and the model 366 

at all AERONET sites at 440 nm and 870 nm wavelengths, respectively. In this study, we 367 

excluded SSAs value when AOD is less than 0.4 because the uncertainty of  SSA retrieval 368 

is high for low AODs (Dubovik et al., 2002). The model well simulates the observed SSA 369 

at 870 nm but slightly overestimates the observed SSA at 440 nm. The mean SSA of  the 370 

model (0.95) is 0.05 higher than the observation (0.90) at 440 nm. The model 371 

underestimates BC and scattering aerosols (PM2.5 minus BC) by 37% and 23%, 372 

respectively. The underestimation of  BC (scattering aerosols) overestimates 373 

(underestimates) the SSA, which can offset the simulated SSA error. Therefore, it can be 374 

inferred that the overestimation of  SSA was caused by other factors. This SSA 375 

overestimation is also discussed by Jo et al. (2016), and they found that the SSA produced 376 

by GEOS-Chem overestimated the AERONET observations. The next section examines 377 

the reason for this overestimation of  SSA. 378 

Figs. 5c and 5d are similar to Figs. 5a and 5b, but only using AERONET data that 379 

meet the two criteria described above. The model shows an improved SSA at 440 nm 380 

with increasing correlation coefficient from 0.34 to 0.50. The improved results are also 381 

seen in the evaluation of  AOD at 500 nm (Fig. 4b), but the model does not show 382 

improved SSA at 870 nm. Although some wavelengths did not show improvement in 383 

SSA, the results for AOD at 500 nm and SSA at 440 nm are improved using selected 384 

AERONET sites. Therefore, we use only filtered AERONET data for sensitivity studies 385 

below. 386 

 387 

 388 

5. Influence of  parameters in global SSA simulation 389 

In this section, we discuss the sensitivity analysis of  aerosol characteristics 390 

including mixing state, BrC, and soil dust size distributions on SSA values. We also 391 

examine the sensitivity to the physical properties of  BC, but there are no significant 392 

differences (Fig. S5). We compare the model SSA values at 440 and 870 nm with the 393 

AERONET observations. 394 

Fig. 6 shows the effect of  BC internal mixing on global SSA calculation. We 395 

found that both homogeneous internal mixing (GEOS_HI; Fig. 6a) and core-shell 396 
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internal mixing (GEOS_CS; Fig. 6b) significantly reduce SSA (GEOS_HI: 0.85 and 397 

GEOS_CS: 0.84) at 440 nm (see Table 5). Also, the NMBs of  the AODs of  internal 398 

mixing (GEOS_HI: -0.13 and GEOS_CS: -0.13) are larger than those of  external mixing 399 

(GEOS_EX: -0.03) at 500 nm (see Table S1). AOD also significantly decreases when 400 

using internal mixing rather than external mixing. The main reason for these results is a 401 

decrease in the aerosol number concentration with increasing aerosol size, which is 402 

similar to the previous result published by Curci et al. (2015). 403 

Considerations for BrC absorption (GEOS_BR_EX) and change in soil dust size 404 

distribution (GEOS_DI_EX) both reduce the overestimation of  SSA (Figs. 6c-d). 405 

Compared to SSA in the baseline simulation (GEOS_EX) at 440 nm, the global mean 406 

SSAs for GEOS_BR_EX and GEOS_DI_EX decrease by 0.015 and 0.008, respectively, 407 

and the regression slopes increase from 0.38 to 0.55 and 0.67, respectively. The 408 

correlation of  GEOS_BR_EX slightly increases (R = 0.56), whereas GEOS_DI_EX 409 

decreases (R = 0.34). Unlike the SSA results, there is no significant AOD reduction (-7% 410 

– 1%) compared to GEOS_EX (see Table S1). 411 

Fig. 7 shows the SSA sensitivity at 440 nm, considering both BrC absorption and 412 

soil dust size distribution. Although SSA overestimation remains in the model, all four 413 

sensitivity cases show improved SSA compared to the baseline simulation. Based on these 414 

results, we suggest that the SSA gap between the model and the observation be reduced 415 

by assuming strong BrC absorption (Chung et al., 2012). However, since BrC absorption 416 

varies widely in the region (Jo et al., 2016), it is still unclear whether BrC is globally 417 

dominant. Therefore, further studies are needed to improve the accuracy of  BrC 418 

concentration to better understand the effect of  BrC on SSA. 419 

We also found that increasing the geometric mean radius of  BC reduces 420 

correlation coefficient and regression slope. This result implies that using a small 421 

spherical radius (~ 0.02 µm) of  BC in the Mie theory is more appropriate than a large 422 

radius (~ 0.1 µm). Although the spherical Mie theory is not appropriate for calculating 423 

BC optical properties because BC generally forms aggregates rather than spheres, the use 424 

of  a BC radius of  0.02 µm in the global model can provide better SSA results. However, 425 

SSA at 870 nm shows quite different results from 440 nm because BC has a more 426 

dominant influence on aerosol absorption than dust or BrC at 870 nm. Yang et al. (2009) 427 
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reported that the mass absorption efficiency of  BC (5.9 m2 g-1) at 880 nm was higher 428 

than that of  dust (0.001 m2 g-1) or BrC (0.02 m2 g-1). The difference is mainly due to the 429 

refractive index and size distribution of  BC. We found out that the effects of  the 430 

refractive index of  BC on SSA are more pronounced at 870 nm than at 440 nm. For 431 

example, when we use a higher refractive index (BB_BR_DI_EX), the SSA at 870 nm is 432 

reduced by 0.02, and the absolute magnitude of  the decrease is more significant than at 433 

440 nm (-0.01) (Table 6). Based on several sensitivity results for AOD and SSA, we found 434 

that the GEOS_BR_DI_EX case shows the best model performance for AERONET 435 

observations. The DRE calculated using GEOS_BR_DI_EX will be discussed in the 436 

next section. 437 

 438 

6. Implications for Global DRE 439 

In this section, we calculated the clear-sky global DRE using the input parameters 440 

selected in the previous section. Fig. 9a shows the annual mean global DRE from the 441 

baseline simulation (GEOS_EX) for 2008-2010. The result shows negative values globally, 442 

except for North Africa, where there is weak absorption due to high dust aerosols. The 443 

absolute values of  high DRE are found in areas with high levels of  anthropogenic (East 444 

Asia) and biomass burning (Central Africa) emissions. The global mean DRE (-2.62 W m-445 

2) is equal to the previous work (-2.62 W m-2) by Heald et al. (2014). 446 

The absorption by BrC (GEOS_BR_EX) increases the annual mean global DRE 447 

by 0.07 W m-2, especially in regions with high biofuel (East Asia) and biomass burning 448 

(Central Africa) emissions. However, we assumed that the increase in global DRE by BrC 449 

may be higher than 0.07 W m-2, because the simulated BrC absorption may be 450 

underestimated (see section 5). The annual mean global DRE increases by 0.17 W m-2 451 

(Fig. 9f) due to changes in the soil dust size distribution (GEOS_DI_EX), which is more 452 

than twice the DRE increase due to BrC absorption. Finally, considering both the 453 

absorption of  BrC and the change in soil dust size distribution (GEOS_BR_DI_EX), the 454 

DRE increases by 0.26 W m-2 (Fig. 9g), which accounts for 10% of  the annual mean 455 

global DRE of  the baseline case (GEOS_EX). 456 

SSA changes compared to GEOS_EX at 440 nm showed that the effects of  BrC 457 

absorption (-0.02) are relatively higher than that of  the dust size distribution change (-458 
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0.01) (see Table 5). However, the relatively high DRE change (0.17) is mainly due to the 459 

soil dust burden (14.4 Tg), which is 10–100 times higher than OC (1.4 Tg) and BC (0.1 460 

Tg) (Fig. 9f). Therefore, unlike SSA, we found out that soil dust size distribution plays an 461 

important role in estimating the global DRE of  the model, which is similar to Kok et al. 462 

(2017). 463 

 464 

7. Summary and discussion 465 

In this study, we examined the effects of  four input variables, namely mixing state, 466 

physical parameters of  BC, soil dust size distribution, and BrC, to the global SSA 467 

estimation using the GEOS-Chem and FlexAOD. First, we evaluated the model 468 

extensively using surface aerosol concentrations (AMS and SPARTAN networks) and 469 

AOD (AERONET). We then examined the effect of  input parameters on the global SSA 470 

using sensitivity experiments and observations at 440 nm and 870 nm. We found that the 471 

combination of  external mixing state, BrC, and observational basis of  soil size 472 

distribution provides the best performance model, compared to AERONET SSA and 473 

AOD. However, it is difficult to determine whether the input parameters derived from 474 

these results can be directly applied to other global models. Although not discussed in 475 

detail in this study, other factors affect global SSA and AOD calculations, such as 476 

hygroscopic growth factors. We propose some notable results that can be applied to the 477 

use of  the Mie theory for calculating aerosol optical properties in the chemical transport 478 

models: 479 

1. The influence of  input parameters of  OPAC and Bond and Bergstrom (2006) 480 

did not show any significant difference in BC absorption. However, the refractive index 481 

used in the former (1.74 – 0.44i) is lower than the latter (1.95 – 0.79i), and the BC 482 

absorption of  OPAC is 33% lower than that of  Bond and Bergstrom (2006). The 483 

relatively low BC particle density (1.0 g cm-3) used by OPAC causes relatively high 484 

number concentration, which may lead to increased AOD and absorption of  BC. We 485 

found that the global mean SSA using OPAC, 0.93, is similar to that of  Bond and 486 

Bergstrom (2006), 0.93. Although previous studies related to global optical properties did 487 

not provide the density of  BC used in their Mie calculations, BC density is an important 488 

factor in SSA estimation and is one of  the variables that must be emphasized in future 489 
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model intercomparison studies. 490 

2. The assumption of  the external mixing state shows better global optical results 491 

than that of  the internal mixing state. The internal mixing state causes high absorption 492 

and results in an underestimation of  the model SSA compared to AERONET 493 

observations. SSA underestimation by the internal mixing state has also been reported in 494 

previous studies such as aircraft observations and laboratory measurements (Cappa et al., 495 

2012; Drury et al., 2010). However, the effects of  BC absorption due to the internal 496 

mixing state can also vary depending on the region, coating thickness, aging time, and 497 

distance from the source (Liu et al., 2015). Therefore, future modeling studies need to 498 

consider region-specific mixing states to derive optimal optical results. 499 

3. The characteristics of  SSA differ at different wavelengths. However, in 500 

previous modeling studies, SSAs were mostly compared with observations at wavelengths 501 

of  440-550 nm (Dai et al., 2015; Lin et al., 2014). Therefore, we suggest that shorter or 502 

longer wavelengths should be considered while evaluating the overall effects of  aerosols 503 

on SSA. 504 

4. Global models should take into account both the BrC absorption and 505 

observation-based dust size distribution. These factors reduce the SSA at short 506 

wavelengths, thereby reducing the positive SSA bias at 440 nm found in previous global 507 

modeling studies (Jo et al., 2016; Lin et al., 2014). 508 

5. The global annual mean DRE is significantly increased (0.17 W m-2) by 509 

observation-based dust size distribution, which is more than twice as high as the DRE 510 

increase due to BrC absorption (0.07 W m-2). We propose that an improved soil dust size 511 

distribution based on observations be applied to global DRF estimates. 512 

 513 
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Appendix 796 

 797 
 798 
Table A1. Descriptions for sensitivity cases used in this study. 799 

Cases Description 

 BC input parameters from mixing state assumption brown carbon size distribution of soil dust 
from Zhang et al. (2013)  

GEOS_EX GEOS case external X X 

OPAC_EX OPAC case external X X 

BB_EX BB case external X X 

BBR_EX BBR case external X X 

BBHR_EX BBHR case external X X 

GEOS_HI GEOS case homogeneous internal X X 

GEOS_CS GEOS case core-shell internal X X 

OPAC_HI OPAC case homogeneous internal X X 

OPAC_CS OPAC case core-shell internal X X 

GEOS_BR_EX GEOS case external O X 

GEOS_DI_EX GEOS case external X O 

GEOS_BR_DI_EX GEOS case external O O 

BB_BR_DI_EX BB case external O O 

BBR_BR_DI_EX BBR case external O O 

BBHR_BR_DI_EX BBHR case external O O 

  800 
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Tables 801 

 802 
 803 
Table 1. Annual global emissions for anthropogenic and natural sources.  804 

Emission types 

Species 

Sources SOx  
[TgS] 

NOx  
[TgN] 

NH3  
[TgN] 

BC  
[TgC] 

OC  
[TgC] 

Dust  
[Tg] 

Sea salt  
[Tg] 

Anthropogenic 55.0 30.0 39.31) 5.5 12.1   HTAPv2 
Biomass burning 0.9 4.3 3.3 1.9 16.2 

  Giglio et al. (2013) 
Volcanic 13.9 

      AeroCom  
Oceanic DMS 16.8       Park et al. (2004) 

Soil  10.2      Hudman et al. (2012) 
Lightning 7.1        Murray et al. (2012) 
Aircraft 0.1 0.8      Stettler et al. (2011) 

Dust      1165.2  Fairlie et al. (2007) 
Sea salt       3321.8 Jaeglé et al. (2011) 
Total 86.7 52.5 42.6 7.4 28.3 1165.2 3321.8   

 
      

   805 
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Table 2. Physical input values for Mie calculation using FlexAOD. The mean radius (rg) and standard deviation (σg), density (ρ), the real 806 

and imaginary part of  refractive indices (RI) at 440 nm and 870 nm, and hygroscopic growth factors (HGFs) for 50% and 95% are 807 

presented. 808 

 Inorganics OC BC 
Sea salt Dust 

 
Accumulation Coarse Bin1 Bin2 Bin3 Bin4 

rg (µm) 0.0695a 0.073b 0.020c 0.085d 0.401d 0.1-1.0 1.0-1.8 1.8-3.0 3.0-6.0 

σg 1.6b 1.6b 1.6b 1.5d 1.8d     
ρ (g cm-3) 1.7e 1.8a 1.8f 2.2a 2.5 2.65 2.65 2.65 

RI at 440 nm 1.53 - 0.005ia 1.53 - 0.005ia 1.75 - 0.456a 1.50 – 2.54ｘ10-8ia 1.570 - 0.0025ig 

RI at 870 nm 1.52 - 0.009ia 1.52 - 0.009ia 1.75 - 0.435a 1.48 – 3.03ｘ10-5ia 1.540 - 0.0009ig 

HGFs at 50% 1.34a 1.14h 1.00e 1.81a 1.81a 1.0 

HGFs at 95% 1.88a 1.35h 1.50e 2.89a 2.92a 1.0 

a) Hess et al. (1998)  809 
b) Drury et al. (2010) 810 
c) http://wiki.seas.harvard.edu/geos-chem/ 811 
d) Jaeglé et al. (2011) 812 
e) Chin et al. (2002)  813 
f) Bond and Bergstrom (2006) 814 
g) Sinyuk et al. (2003)  815 
h) Jimenez et al. (2009)  816 
 817 
  818 



  

-32- 
 

Table 3. Input parameters for sensitivity simulations of  BC.  819 

Cases refractive index density  
[g cm-3] 

mean radius 
[µm] sigma 

GEOS 1.74 - 0.44i 1.8  0.02 1.6  

OPAC 1.74 - 0.44i 1.0  0.0118 2.0  

BB 1.95 - 0.79i 1.8  0.02 1.6  

BBR 1.95 - 0.79i 1.8  0.065 1.6  

BBHR 1.95 - 0.79i 1.8  0.1 1.6  

 820 
 821 
  822 
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Table 4. Statistical results of  the evaluation of  aerosol mass concentrations using two 823 

global observation networks. The reduced major axis method was used for the regression 824 

slopes.  825 

Observation 
network Species Ra Slope Yictb NMBc RMSEd 

AMS 

Sulfate 0.78  0.77  1.31  0.17  2.25  
Nitrate 0.62  0.84  0.68  0.40  2.04  

Ammonium 0.78  0.69  0.71  0.21  1.18  
Organics 0.36  0.59  0.18  -0.37  4.77  

SPARTAN 

Sulfate 0.48  0.75  1.02  -0.05  3.84  

Nitrate 0.68  3.60  0.45  2.92  7.66  

Ammonium 0.59  1.72  0.48  1.01  3.03  

BC 0.94  -0.80  0.47  -0.37  2.20  

Dust 0.38  1.14  -1.88  -0.25  6.00  

PM2.5 0.76  0.70  2.37  -0.24  21.65 

a) R: correlation coefficient 826 
b) Yict: y-axis intercept 827 
c) NMB: normalized mean bias 828 
d) RMSE: root mean square error  829 
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Table 5. Statistical values for the sensitivity simulation of  SSA at 440 nm. The observed 830 

mean SSA was 0.89. AOD > 0.4 data were only used. 831 

Cases Ra Mean Slope Yictb RMSEc Mean bias 

GEOS_EX 0.50  0.94  0.38  0.60  0.06  0.06  
OPAC_EX 0.52  0.93  0.53  0.45  0.05  0.04  

BB_EX 0.53  0.93  0.45  0.53  0.05  0.05  
BBR_EX 0.49  0.94  0.38  0.61  0.06  0.06  

BBHR_EX 0.38  0.95  0.39  0.61  0.07  0.06  

GEOS_HI 0.13  0.85  2.18  -1.08  0.07  -0.04  
GEOS_CS 0.14  0.84  2.03  -0.96  0.07  -0.05  
OPAC_HI 0.07  0.81  2.98  -1.83  0.11  -0.08  

OPAC_CS 0.09  0.82  2.53  -1.43  0.10  -0.07  

GEOS_BR_EX 0.56  0.93  0.55  0.44  0.05  0.04  

GEOS_DI_EX 0.34  0.94  0.67  0.34  0.06  0.05  

GEOS_BR_DI_EX 0.53  0.92  0.70  0.30  0.04  0.03  
BB_BR_DI_EX 0.57  0.91  0.75  0.24  0.03  0.02  

BBR_BR_DI_EX 0.52  0.92  0.69  0.31  0.04  0.03  

BBHR_BR_DI_EX 0.46  0.93  0.68  0.32  0.05  0.04  
a) R: correlation coefficient 832 
b) Yict: y-axis intercept 833 
c) RMSE: root mean square error 834 
 835 
  836 
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Table 6 Same as Table 5 except the SSA is at 870 nm. The observed mean SSA was 0.92.  837 

Cases Ra Mean Slope Yictb RMSEc Mean bias 

GEOS_EX 0.76  0.92  1.17  -0.16  0.03  0.01  
OPAC_EX 0.77  0.90  1.63  -0.60  0.04  -0.02  

BB_EX 0.77  0.91  1.45  -0.42  0.03  -0.01  
BBR_EX 0.77  0.90  1.49  -0.46  0.04  -0.01  

BBHR_EX 0.77  0.91  1.35  -0.33  0.03  -0.01  

GEOS_HI 0.70  0.90  1.58  -0.56  0.04  -0.02  
GEOS_CS 0.73  0.87  1.83  -0.81  0.06  -0.05  
OPAC_HI 0.72  0.87  2.09  -1.05  0.07  -0.05  

OPAC_CS 0.74  0.84  2.28  -1.25  0.09  -0.08  

GEOS_BR_EX 0.76  0.92  1.16  -0.14  0.03  0.01  

GEOS_DI_EX 0.79  0.91  1.15  -0.14  0.02  -0.01  

GEOS_BR_DI_EX 0.79  0.91  1.10  -0.10  0.02  -0.01  
BB_BR_DI_EX 0.79  0.89  1.37  -0.37  0.04  -0.03  

BBR_BR_DI_EX 0.80  0.89  1.41  -0.40  0.04  -0.03  

BBHR_BR_DI_EX 0.80  0.90  1.27  -0.27  0.03  -0.02  
a) R: correlation coefficient 838 
b) Yict: y-axis intercept 839 
c) RMSE: root mean square error 840 
 841 
  842 
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Figures  843 

 844 
 845 

 846 
Fig. 1. (a) Sensitivity results of  the mean radius (x-axis) and standard deviations (lines) for 847 

BC to AAOD (y-axis) at 550 nm. The blue rectangle and red star indicate GEOS-Chem 848 

baseline and OPAC, respectively. The 1.95 – 0.79i were used for the real and imaginary 849 

parts of  refractive indices, respectively. (b) Sensitivity results of  black carbon AAOD 850 

(contour line, multiplied by 1000) as a function of  the real (x-axis) and imaginary (y-axis) 851 

parts of  refractive indices. The blue rectangle and red star represent BC AAODs using 852 

refractive indices by Bond and Bergstrom (2006) and OPAC, respectively. For both plots, 853 

the hygroscopic growth factor of  BC was not considered. The density of  1.8 g cm-3 and a 854 

column concentration of  0.25 mg m-2 were used.  855 

  856 
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857 
 Fig. 2. Scatterplots of  the observed and simulated aerosol concentrations at AMS sites. 858 
The 1:1 line, 1:2 lines, and 1:10 lines are inset. 859 

  860 
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 861 
Fig. 3. Scatterplots of  the observed and simulated aerosol concentrations at SPARTAN 862 

sites. Colors indicate different regions: North America (NAM; blue), South America 863 

(SAM; green), East Asia (EAS; red), Southeast Asia (SEA; cyan), South Asia (SAS; 864 

magenta), West Asia (WAS, yellow), and Africa (AFR; black). The 1:1 line, 1:2 lines, and 865 

1:10 lines are inset. 866 

 867 
 868 
  869 
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 870 
Fig. 4. Scatterplots of  the observed and simulated monthly mean AOD at 500 nm for (a) 871 

all AERONET data and (b) selected AERONET data by two criteria for the AMS and 872 

SPARTAN data.  873 

  874 
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 875 
Fig. 5. Scatterplots of  the observed and simulated monthly mean SSA at 440 nm (a, c) 876 

and 870 nm (b, d). All AERONET data were used for a) and b), and selected AERONET 877 

data were used for c), and d).  878 

  879 
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  880 
Fig. 6. Scatterplots of  the observed versus simulated monthly mean SSA at 440 nm for 881 

sensitivity experiments of  (a) homogeneous internal mixing assumption (GEOS_HI), (b) 882 

core-shell internal mixing assumption (GEOS_CS), (c) brown carbon absorption with 883 

external mixing assumption (GEOS_BR_EX), and (d) observationally-constrained dust 884 

size distribution with external mixing assumption (GEOS_DI_EX). 885 
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 887 

 888 
Fig. 7. Scatterplots of  the observed versus simulated monthly mean SSA at 440 nm for 889 

sensitivity simulations of  BC input parameters from (a) GEOS, (b) BB, (c) BBR, and (d) 890 

BBHR. BR_DI_EX denotes the brown carbon, dust size distribution, and external 891 

mixing assumption. 892 
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 894 
Fig. 8. Same as Fig. 7, except for SSA at 870 nm. 895 
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 897 
Fig. 9. Sensitivity results of  annual mean DRE of  the (a) GEOS_EX, (b) 898 

GEOS_BR_EX, (c) GEOS_DI_EX, and (d) GEOS_BR_DI_EX cases at the top of  the 899 

atmosphere. Differences between the GEOS_EX case and each sensitivity are shown in 900 

the right panel (e, f, and g). 901 

 902 

 903 
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Highlights 

• Single scattering albedo (SSA) has different characteristics at 440 and 870 nm. 

• Black carbon density is an important factor in SSA estimation. 

• Brown carbon absorption and dust size distribution reduce SSA at 440 nm. 

• Mixing state and refractive index of aerosols affect SSA values. 

• Correcting SSA bias increases aerosol direct radiative effect (DRE) by 10%. 
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