Impact of updated European biogenic emission inventory on air quality using Chimere chemistry-transport model

NATURAL AND BIOGENIC EMISSIONS FACTS

- Include lots of sources: vegetation, soils, sea spray, fires, volcanoes, lightning and others
- Non-linearly interact with anthropogenic emissions (e.g. NOx) contributing to ozone (O3) and particulate matter (PM) formation
- European Community is discussing the possibility of subtracting their contribution from PM violations (CEC, 2005)

CONCLUSIONS

- We evaluated the impact of natural/biogenic sources on O3 and PM_{10} using a regional CTM (CHIMERE) for year 2003
- Impact on O3 is on average 2.8 ppbv (5%) for summer 2003
- Impact on PM_{10} is on average 8 µg/m³ (40%) for year 2003
- Max impact in Southern Europe, particularly Iberian Peninsula
- Bio O3 is coupled with anthropogenic NOx, while bio PM_{10} is not
- In extremely hot summer of 2003 impact of BVOC oxidation reach 100 ppbv O3 and 35 µg/m³ PM_{10} in Spain

CHIMERE eulerian chemistry-transport regional model (V200709C)

METEO: MMS forced by ECMWF analyses with nudging

DOMAINE: 0.5°x0.5° over Europe

- Anthropogenic: gas and PM (EMEP), EC+OC (Lab. Aérologie)
- Natural/bio: VOC and NO (NatAir), dust, sea salt

BIogenic VOC IMPACT ON OZONE (JJA 2003)

Average O3 daily max w/ ANTHRO emiss. only

ΔO3 daily max + BVOC emissions

+ 2.8 ppbv (5%) over land

Large impact in Southern Europe, in Portugal >15 ppbv

Large impact also near major metropolitan areas

NATURAL/BIOGENIC IMPACT ON PM_{10} (2003)

Anthropogenic PM_{10}

Natural/Bio PM_{10}

+ 8 µg/m³ (40%) over land

Large impact in Southern Europe, > anthropogenic PM_{10}

Largely decoupled from anthropogenic PM_{10}

REFERENCES

IMPACT OF UPDATED EUROPEAN BIOMASS BURNING EMISSION INVENTORY ON OZONE AND PM QUALITY IN southern Europe 2003

1. CETEMPS, Délégation de l’Europe, Aix-en-Provence, France. 2. Laboratoire de Météorologie Dynamique, Laboratoire de Climat et de l’Environnement, Toulouse, France. 3. Institut National de l’Environnement Industriel et des Risques, Vermeulen en Brabant, France. 4. Laboratoire de Météorologie Dynamique, IPSL, Talence, France. 5. Institut für Meteorologie und Klimaforschung, Atmosphärische Umweltforschung, Karlsruher Institut für Technologie, Germany. 6. Institut für Energiewirtschaft und Naturschutzforschung, Karlsruher Institut für Technologie, Germany.

e-mail: gabrielle.curci@aquila.infn.it

SUMMARY

- In polluted regions with significant BVOC emissions the probability of 8-h ozone limit violation is greatly increased.
- In Italy, model predicted violations increase from 5% to 13% when accounting for BVOC emissions.

- Very large episodic contribution of BVOC to hourly ozone: up to 100 µg/m³ (~50 ppbv) for one extreme case in Spain during August 2003.

- Very large contribution in Southern Spain: up to 35 µg/m³ (~80%) during summer due to SOA from BVOC oxidation!

- Sea salts up to 40% of PM_{10} at coastal sites. Saharan dust >20% in Southern Europe. Secondary Organic Aerosols (SOA) ~10% but in Spain.